山东省临沂市罗庄区2024-2025学年高一数学下学期期末考试试题_第1页
山东省临沂市罗庄区2024-2025学年高一数学下学期期末考试试题_第2页
山东省临沂市罗庄区2024-2025学年高一数学下学期期末考试试题_第3页
山东省临沂市罗庄区2024-2025学年高一数学下学期期末考试试题_第4页
山东省临沂市罗庄区2024-2025学年高一数学下学期期末考试试题_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE7山东省临沂市罗庄区2024-2025学年高一数学下学期期末考试试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.留意事项:答卷前,考生务必将自己的班级、姓名、准考证号、考试科目及试卷类型用中性笔和2B铅笔分别涂写在答题卡上;将全部试题答案及解答过程一律填写在答题卡上.试题不交,只交答题卡.第Ⅰ卷(选择题共60分)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数满意为虚数单位),则在复平面上对应的点的坐标为A. B.C.D.2.从分别写有,,,,的张卡片中随机抽取张,放回后再随机抽取张,则抽得的第一张卡片上的数大于其次张卡片上的数的概率为A.B.C.D.3.如图所示的直观图中,,则其平面图形的面积是A.B.C.D.4.已知非零向量,,若,且,则与的夹角为A.B.C.D.5.设是一条直线,,是两个平面,下列结论正确的是A.若,,则B.若,,则C.若,,则D.若,,则6.已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为,若的面积为,则该圆锥的体积为A.B.C.D.7.已知数据,,,的方差为4,若,2,,,则新数据,,,的方差为A.16B.13C.D.8.已知的三个内角,,所对的边分别为,,,,则等于A.B.C.D.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有错选的得0分.9.若干个人站成一排,其中不是互斥事务的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”10.下面是甲、乙两位同学高三上学期的5次联考的数学成果,现只知其从第1次到第5次分数所在区间段分布的条形图(从左至右依次为第1至第5次),则从图中可以读出肯定正确的信息是()A.甲同学的成果的平均数大于乙同学的成果的平均数B.甲同学的成果的中位数在115到120之间C.甲同学的成果的极差小于乙同学的成果的极差D.甲同学的成果的中位数小于乙同学的成果的中位数11.已知,,是同一平面内的三个向量,下列命题正确的是()A. B.若且,则 C.两个非零向量,,若,则与共线且反向 D.已知,,且与的夹角为锐角,则实数的取值范围是,12.在四棱锥中,底面是正方形,底面,,截面与直线平行,与交于点,则下列推断正确的是A.为的中点 B.与所成的角为 C.平面 D.三棱锥与四棱锥的体积之比等于第Ⅱ卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.若复数满意方程,则.14.如图,在中,已知是延长线上一点,点为线段的中点,若,且,则.15.某次学问竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于. 16.如图,在正方体中,点为线段的中点,设点在线段上,直线与平面所成的角为,则的最小值,最大值.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程17.(本小题满分10分)如图所示,是的重心,,分别是边,上的动点,且,,三点共线. (1)设,将用,,表示;(2)设,,求的值.18.(本小题满分12分)已知函数,且当时,的最小值为,(1)求的值,并求的单调递增区间;(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得的图象向右平移个单位,得到函数的图象,当时,求的的集合.19.(本小题满分12分)(1)求证:平面平面;(2)若,,是的中点,求与平面所成角的正切值.20.(本小题满分12分)某校在一次期末数学测试中,为统计学生的考试状况,从学校的名学生中随机抽取名学生的考试成果,被测学生成果全部介于分到分之间(满分分),将统计结果按如下方式分成八组:第一组,其次组,,第八组,如图是按上述分组方法得到的频率分布直方图的一部分.(1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的名学生这次考试成果的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成果属于第六组和第八组的全部学生中随机抽取名,求他们的分差的肯定值小于分的概率.21.(本小题满分12分)(1)求的值;(2)若,,求的面积.22.(本小题满分12分)(1)求异面直线与所成角的余弦值;(2)求二面角的正弦值;(3)设为棱的中点,在上,并且,点在平面内,且平面,证明:ME∥平面.2024-2025学年下学期高一质量检测数学试题参考答案2024.07一、单项选择题:CDABCCAD二、多项选择题:9.BCD10.BD11.AC12.ACD二、填空题:13.14.15.16.,三、解答题:17.解:(1)。…………5分

(2)由(1)得,……①……7分另一方面,因为是的重心,所以,……②……9分由①②得,∴.……………………10分18.解:(1)函数,…2分∵,∴,,得,………3分即.令,得,………………5分∴函数的单调递增区间为.………………6分(2)由(1)得,由的图象上的点纵坐标不变,横坐标缩小到原来的,得,…………7分再将图象向右平移个单位,得,……………9分又∵.即,…………………10分∴,即.…………………11分∵,∴不等式的解集。…………12分19.(1)证明:在三棱锥中,∵底面,∴。………2分又∵,即,,…………3分∴平面,………………5分平面∴平面平面。…………6分(2)解:在平面内,过点作,连结,……………7分∵平面平面,∴平面,………8分∴是直线与平面所成的角。………9分在中,∵,,∴为的中点,且,又∵是的中点,在中,…………10分∵平面,平面,∴,………11分在直角三角形中,。……………12分20.解:(1)由频率分布直方图得第七组的频率为:.……2分完成频率分布直方图如下:………………4分

(2)用样本数据估计该校的名学生这次考试成果的平均分为:。………………8分

(3)样本成果属于第六组的有人,样本成果属于第八组的有人,………………9分记第六组的3人为,,;第八组的2人为,。从样本成果属于第六组和第八组的全部学生中随机抽取名,基本领件,,,,,,,,,,基本领件总数为。………………10分.………………11分故他们的分差的肯定值小于分的概率.……………12分21.解:(1)∵,∴由正弦定理可知,………………2分即,∴,…………………3分∵,∴,∵,∴,∵,……5分∴.…………………6分

(2)∵,,∴由余弦定理,可得,∴,…………9分∵,∴解得,…………………11分∴.…………12分22.解:(1)∵,∴是异面直线与所成的角.……1分∵平面,又为正方形的中心,,.可得∴…………3分∴异面直线与所成角的余弦值为.…………4分(2)连接,易知,又由于,,∴,…………5分过点作于点,连接,得,故为二面角的平面角.在中,。连接,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论