




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆乌鲁木齐地区2025届数学高二上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正三棱锥S-ABC中,AB=4,D、E分别是SA、AB中点,且DE⊥CD,则三棱锥S-ABC外接球的体积为()A.π B.πC.π D.π2.已知随机变量,且,,则为()A.0.1358 B.0.2716C.0.1359 D.0.27183.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A B.C. D.64.设变量,满足约束条件,则目标函数的最大值为()A. B.0C.6 D.85.如图,在平行六面体中,底面是边长为的正方形,若,且,则的长为()A. B.C. D.6.已知集合,则()A. B.C. D.7.过椭圆右焦点作x轴的垂线,并交C于A,B两点,直线l过C的左焦点和上顶点.若以线段AB为直径的圆与有2个公共点,则C的离心率e的取值范围是()A. B.C. D.8.平行六面体的各棱长均相等,,,则异面直线与所成角的余弦值为()A. B.C. D.9.设函数,则曲线在点处的切线方程为()A. B.C. D.10.已知正实数x,y满足4x+3y=4,则的最小值为()A. B.C. D.11.已知,为双曲线的左,右顶点,点P在双曲线C上,为等腰三角形,且顶角为,则双曲线C的离心率为()A. B.C.2 D.12.已知直线过点,且与直线垂直,则直线的方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.14.已知圆锥的侧面积为,若其过轴的截面为正三角形,则该圆锥的母线的长为___________.15.已知从某班学生中任选两人参加农场劳动,选中两人都是男生的概率是,选中两人都是女生的概率是,则选中两人中恰有一人是女生的概率为______16.定义在上的函数满足:有成立且,则不等式的解集为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中a为正数(1)讨论单调性;(2)求证:18.(12分)已知双曲线及直线(1)若与有两个不同的交点,求实数的取值范围(2)若与交于,两点,且线段中点的横坐标为,求线段的长19.(12分)已知函数,当时,函数有极值1.(1)求函数的解析式;(2)若关于x的方程有一个实数根,求实数m的取值范围.20.(12分)已知圆C过点,,它与x轴的交点为,,与y轴的交点为,,且.(1)求圆C的标准方程;(2)若,直线,从点A发出的一条光线经直线l反射后与圆C有交点,求反射光线所在的直线的斜率的取值范围.21.(12分)已知曲线在处的切线方程为,且.(1)求的解析式;(2)若时,不等式恒成立,求实数的取值范围.22.(10分)已知函数,(1)讨论的单调性;(2)若时,对任意都有恒成立,求实数的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】取中点,连接,证明平面,得证,然后证明平面,得两两垂直,以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由此计算可得【详解】取中点,连接,则,,,平面,所以平面,又平面,所以,D、E分别是SA、AB的中点,则,又,所以,,平面,所以平面,而平面,所以,,是正三棱锥,因此,因此可以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由,得,所以所求外接球直径为,半径为,球体积为故选:C2、C【解析】根据正态分布的对称性可求概率.【详解】由题设可得,,故选:C.3、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.4、C【解析】画出可行域,利用几何意义求出目标函数最大值.【详解】画出图形,如图所示:阴影部分即为可行域,当目标函数经过点时,目标函数取得最大值.故选:C5、D【解析】由向量线性运算得,利用数量积的定义和运算律可求得,由此可求得.【详解】由题意得:,,且,又,,,,.故选:D.6、D【解析】由集合的关系及交集运算,逐项判断即可得解.【详解】因为集合,,所以,,.故选:D.【点睛】本题考查了集合关系的判断及集合的交集运算,考查了运算求解能力,属于基础题.7、A【解析】求得以为直径的圆的圆心和半径,求得直线的方程,利用圆心到直线的距离小于半径列不等式,化简后求得椭圆离心率的取值范围.【详解】椭圆的左焦点,右焦点,上顶点,,所以为直径的圆的圆心为,半径为.直线的方程为,由于以线段为直径的圆与相交,所以,,,,,所以椭圆的离心率的取值范围是.故选:A8、B【解析】利用基底向量表示出向量,,即可根据向量夹角公式求出【详解】如图所示:不妨设棱长为1,,,所以==,,,即,故异面直线与所成角的余弦值为故选:B注意事项:1.将答案写在答题卡上2.本卷共10小题,共80分.9、A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A10、A【解析】将4x+3y=4变形为含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由换元法、基本不等式换“1”的代换求解即可【详解】由正实数x,y满足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,当且仅当时取等号,∴的最小值为.故选:A11、A【解析】根据给定条件求出点P的坐标,再代入双曲线方程计算作答.【详解】由双曲线对称性不妨令点P在第一象限,过P作轴于B,如图,因为等腰三角形,且顶角为,则有,,有,于是得,即点,因此,,解得,所以双曲线C的离心率为.故选:A12、D【解析】由题意设直线方程为,然后将点坐标代入求出,从而可求出直线方程【详解】因为直线与直线垂直,所以设直线方程为,因为直线过点,所以,得,所以直线方程为,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】写出,,求出,根据以及即可求解,【详解】由题意,,,所以,,因为,则,即,即,所以,即,解得或(舍).故答案为:14、【解析】利用圆锥的结构特征及侧面积公式即得.【详解】设圆锥的底面半径为r,圆锥的母线为l,又圆锥过轴的截面为正三角形,圆锥的侧面积为,∴,∴.故答案为:.15、【解析】记“选中两人都是男生”为事件,“选中两人都是女生”为事件,“选中两人中恰有一人是女生”为事件,根据为互斥事件,与为对立事件,从而可求出答案.【详解】记“选中两人都是男生”为事件,“选中两人都是女生”为事件,“选中两人中恰有一人是女生”为事件,易知为互斥事件,与为对立事件,又,所以.故答案为:.16、【解析】由,判断出函数的单调性,利用单调性解即可【详解】设,又有成立,函数,即是上的增函数,,即,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)证明见解析【解析】(1)求解函数的导函数,并且求的两个根,然后分类讨论,和三种情况下对应的单调性;(2)令,通过二次求导法,判断函数的单调性与最小值,设的零点为,求出取值范围,最后将转化为的对勾函数并求解最小值,即可证明出不等式.【小问1详解】函数的定义域为∵令得∵,∴,得或①当,即时,时,或;时,.∴在上单调递增,在上单调递减,在上单调递增②当,即时,时,或;时,.∴在上单调递增,在上单调递减,在上单调递增③当,即时,∴在上单调递增综上所述:当时,在和上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增【小问2详解】令,()∴,令∴,∴在上单调递增又∵,,∴使得,即(*)∴当时,,∴,∴单调递减∴当时,,∴,∴单调递增∴,()由(*)式可知:,∴,∴∵,∴函数单调递减∴,∴∴【点睛】求解本题的关键是利用二次求导法,通过虚设零点,求解原函数的单调性与最小值,并通过最小值的取值范围证明不等式.18、(1)且;(2)【解析】(1)联立直线与双曲线方程,利用方程组与两个交点,求出k的范围(2)设交点A(x1,y1),B(x2,y2),利用韦达定理以及弦长公式求解即可【详解】(1)联立y=2可得∵与有两个不同的交点,且,且(2)设,由(1)可知,又中点的横坐标为,,或又由(1)可知,为与有两个不同交点时,19、(1)(2)【解析】(1)根据,可得可得结果.(2)根据等价转换的思想,可得,利用导数研究函数的单调性,并比较的极值与的大小关系,可得结果.【详解】(1)由,有,又有,解得:,,故函数的解析式为(2)由(1)有可知:故函数的增区间为,,减区间为,所以的极小值为,极大值为由关于x的方程有一个实数根,等价于方程有一个实数根,即等价于函数的图像只有一个交点实数m的取值范围为【点睛】本题考查根据极值求函数的解析式,还考查了方程的根与函数图像交点的等价转换,属基础题.20、(1);(2).【解析】(1)设圆C的一般式方程为:,然后根据题意列出方程,解出D,E,F的值即可得到圆的方程;(2)先求出点关于直线l的对称点,设反射光线所在直线方程为,利用直线和圆的位置关系列出不等式解出k的取值范围即可.【详解】(1)设圆C的一般式方程为:,令,得,所以,令,得,所以,所以有,所以,①又圆C过点,,所以有,②,③由①②③得,,,所以圆C的一般式方程为,标准方程为;(2)设关于的对称点,所以有,解之得,故点,∴反射光线所在直线过点,设反射光线所在直线方程为:,所以有,所以反射光线所在的直线斜率取值范围为.【点睛】本题考查圆的方程的求法,直线和圆的位置关系的应用,考查逻辑思维能力和运算求解能力,属于常考题.21、(1);(2).【解析】(1)根据导数的几何意义得,结合对数的运算性质求出m,利用直线的点斜式方程即可得出切线方程;(2)由(1)将不等式变形为,利用导数研究函数在、、时的单调性,即可得出结果.【小问1详解】,∴,,,,,切线方程为,即,∴.【小问2详解】令,,,当时,,所以在上单调递增,所以,即符合题意;当时,设,①当,,,所以在上单调递增,,所以在上单调递增,所以,故符合题意;②当时,,,所以在上递增,在上递减,且,所以当时,,则在上单调递减,且,故,,舍去.综上:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 塞利洛尔企业县域市场拓展与下沉战略研究报告
- 智能电动轮椅个性化定制行业深度调研及发展战略咨询报告
- 智能湿度敏感性测试仪行业深度调研及发展战略咨询报告
- 买屋买卖合同范例
- 主体工劳务合同范例
- 公司保险补助合同范例
- 中集劳务合同范例
- 低价出售农村建房合同范例
- 二手房销售合同范例
- 书籍编篡合同范例
- 2025年建投国电准格尔旗能源有限公司招聘笔试参考题库含答案解析
- 骨伤科中医临床路径(试行版)19个住院病种
- ICD-10第4章:内分泌、营养和代谢疾病
- 2025年专业技术人员培训心得体会(6篇)
- 2025-2030年中国不饱和聚酯树脂市场发展现状及前景趋势分析报告
- 第三章 第一节 世界的海陆分布说课稿-2024-2025学年湘教版初中地理七年级上册
- 儿童心理学常识题单选题100道及答案
- 【课件】科研数据的种类及处理方法
- 公益性岗位申请书四篇
- 大学生积极心理健康教育知到智慧树章节测试课后答案2024年秋运城职业技术大学
- 《保利公司简介》课件
评论
0/150
提交评论