




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省沙洋县后港中学2025届数学高一上期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,可以将函数的图象A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.设,则的值为()A.0 B.1C.2 D.33.已知函数是定义域为R的奇函数,且,当时,,则等于()A.-2 B.2C. D.-4.函数的零点所在区间为()A. B.C. D.5.函数图象一定过点A.(0,1) B.(1,0)C.(0,3) D.(3,0)6.已知角的始边与轴非负半轴重合,终边过点,则()A.1 B.-1C. D.7.若偶函数在上单调递减,且,则不等式的解集是()A. B.C. D.8.已知,则的值为()A B.1C. D.9.已知函数,若,,互不相等,且,则的取值范围是()A. B.C. D.10.已知,且,对任意的实数,函数不可能A.是奇函数 B.是偶函数C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数二、填空题:本大题共6小题,每小题5分,共30分。11.设集合,,则_________12.已知为第四象限的角,,则________.13.已知,则满足条件的角的集合为_________.14.已知函数,若正实数,满足,则的最小值是____________15.已知,则函数的最大值是__________16.一个圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某地区今年1月、2月、3月患某种传染病的人数分别为52、54、58;为了预测以后各月的患病人数,根据今年1月、2月、3月的数据,甲选择了模型fx=ax2+bx+c,乙选择了模型y=p⋅qx+r,其中y为患病人数,x为月份数,a,b,(1)如果4月、5月、6月份的患病人数分别为66、82、115,你认为谁选择的模型较好?请说明理由;(2)至少要经过多少个月患该传染病的人数将会超过2000人?试用你认为比较好的模型解决上述问题.(参考数据:210=1024,18.如图,在直三棱柱中,点为的中点,,,.(1)证明:平面.(2)求三棱锥的体积.19.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数(Ⅰ)若是奇函数,求的值(Ⅱ)当时,求函数在上的值域,判断函数在上是否为有界函数,并说明理由(Ⅲ)若函数在上是以为上界的函数,求实数的取值范围20.已知.(1)若,求的值;(2)若,且,求的值.21.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:该函数模型如下:根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝一瓶啤酒多少小时后才可以驾车?(时间以整小时计算)(参考数据:)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.2、C【解析】根据分段函数,结合指数,对数运算计算即可得答案.【详解】解:由于,所以.故选:C.【点睛】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.3、B【解析】根据奇函数性质和条件,求得函数的周期为8,再化简即可.【详解】函数是定义域为R的奇函数,则有:又,则则有:可得:故,即的周期为则有:故选:B4、B【解析】由零点存在定理判定可得答案.【详解】因为在上单调递减,且,,所以的零点所在区间为故选:B5、C【解析】根据过定点,可得函数过定点.【详解】因为在函数中,当时,恒有,函数的图象一定经过点,故选C.【点睛】本题主要考查指数函数的几何性质,属于简单题.函数图象过定点问题主要有两种类型:(1)指数型,主要借助过定点解答;(2)对数型:主要借助过定点解答.6、D【解析】利用三角函数的坐标定义求出,即得解.【详解】由题得.所以.故选:D【点睛】本题主要考查三角函数的坐标定义,意在考查学生对这些知识的理解掌握水平.7、A【解析】根据奇偶性,可得在上单调递增,且,根据的奇偶性及单调性,可得,根据一元二次不等式的解法,即可得答案.【详解】由题意得在上单调递增,且,因为,所以,解得,所以不等式的解集是.故选:A8、A【解析】知切求弦,利用商的关系,即可得解.【详解】,故选:A9、A【解析】画出图像,利用正弦函数的对称性求出,再结合的范围即可求解.【详解】不妨设,画出的图像,即与有3个交点,由图像可知,关于对称,即,令,解得,所以,故,.故选:A.10、C【解析】,当时,,为偶函数当时,,为奇函数当且时,既不奇函数又不是偶函数故选二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据集合的交集的概念得到.故答案为12、【解析】给两边平方先求出,然后利用完全平方公式求出,再利用公式可得结果.【详解】∵,两边平方得:,∴,∴,∵为第四象限角,∴,,∴,∴.故答案为:【点睛】此题考查的是同角三角函数的关系和二倍角公式,属于基础题.13、【解析】根据特殊角的三角函数值与正弦函数的性质计算可得;【详解】解:因为,所以或,解得或,因为,所以或,即;故答案为:14、9【解析】根据指数的运算法则,可求得,根据基本不等式中“1”的代换,化简计算,即可得答案.【详解】由题意得,所以,所以,当且仅当,即时取等号,所以的最小值是9故答案为:915、【解析】由函数变形为,再由基本不等式求得,从而有,即可得到答案.【详解】∵函数∴由基本不等式得,当且仅当,即时取等号.∴函数的最大值是故答案为.【点睛】本题主要考查线性规划的应用以及基本不等式的应用,.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).16、.【解析】先求圆锥底面圆的半径,再由直角三角形求得圆锥的高,代入公式计算圆锥的体积即可。【详解】设圆锥底面半径为r,则由题意得,解得.∴底面圆的面积为.又圆锥的高.故圆锥的体积.【点睛】此题考查圆锥体积计算,关键是找到底面圆半径和高代入计算即可,属于简单题目。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)应将y=2(2)至少经过11个月患该传染病的人数将会超过2000人【解析】(1)分别将x=1,2,3代入两个解析式,求得a,b,c,p,q,r,求得解析式,并分别检验x=4,5,6时函数值与真实值的误差,分析即可得答案.(2)令2x+50>2000,可求得【小问1详解】由题意,把x=1,2,3代入fx得:解得a=1,b=-1,c=52,所以fx所以f4=42-4+52=64则f4-66=2,f把x=1,2,3代入y=gx=p⋅解得p=1,q=2,r=50,所以gx所以g4=24+50=66则g4-66=0,因为g4,g5,g6【小问2详解】令2x+50>2000由于210=1024<1950<2048=2所以至少经过11个月患该传染病的人数将会超过2000人18、(1)证明见解析(2)【解析】(1)在平面内作出辅助线,然后根据线面平行判定定理证明即可;(2)作出三棱锥的高,将看作三棱锥的底面,利用三棱锥体积公式计算即可.【小问1详解】证明:连接,交于,连接,因为是直三棱柱,所以为中点,而点为的中点,所以,因为平面,平面,所以平面【小问2详解】解:过作于,因为是直三棱柱,点为的中点,所以,且底面,所以,因为,所以,则,所以19、(1)(2)是(3)或【解析】(1)根据奇函数定义得,解得的值(2)先分离得再根据单调性求值域,最后根据值域判定是否成立(3)转化为不等式恒成立,再分离变量得最值,最后根据最值求实数的取值范围试题解析:解:()由是奇函数,则,得,即,∴,()当时,∵,∴,∴,满足∴在上为有界函数()若函数在上是以为上界的有界函数,则有在上恒成立∴,即,∴,化简得:,即,上面不等式组对一切都成立,故,∴或20、(1)(2)【解析】(1)利用诱导公式求出,由已知得出,再由齐次式即可求解.(2)由题意可得,,再由两角和的正切公式即可求解.【小问1详解】由已知,,得所以【小问2详解】由,,可知,,∴.∵,∴.而,∴.∴,∴.21、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全钢工程子午线轮胎项目可行性研究报告(参考)
- 金属表面处理中心项目实施方案(参考模板)
- 高端光刻胶研发生产项目可行性研究报告(模板范文)
- 电子信息产业园项目规划设计方案
- 半导体制造设备研发项目可行性研究报告(仅供参考)
- 幼儿园一日流程的有效组织
- 传染病业务培训体系构建
- 凉面餐厅行业深度调研及发展项目商业计划书
- 高效能压路机行业跨境出海项目商业计划书
- 高清安防监控摄像头配件行业跨境出海项目商业计划书
- 广东省佛山市重点中学2025届高考临考冲刺历史试卷含解析
- 围手术期肺结节的手术定位和治疗
- 风电行业运营风险分析
- 现代教学技能复习资料附有答案
- JJF 2119-2024低气压试验箱校准规范
- SH/T 3533-2024 石油化工给水排水管道工程施工及验收规范(正式版)
- 期末考试-公共财政概论-章节习题
- 高中物理课件:Tracker软件在高中物理实验教学中的应用-
- 英语词汇学术语表
- YUM-百胜-危机管理培训课程
- 大数据在化工行业中的应用与创新
评论
0/150
提交评论