




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届湖北省荆门沙洋县联考数学九上开学考试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一次函数y=5x-4的图象经过().A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限2、(4分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.6 B.12 C.4 D.83、(4分)不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行 B.一组对边平行,另一组对边相等C.一组对边平行且相等 D.两组对边分别相等4、(4分)Rt△ABO与Rt△CBD在平面直角坐标系中的位置如图所示,∠ABO=∠CBD=90°,若点A(2,﹣2),∠CBA=60°,BO=BD,则点C的坐标是()A.(2,2) B.(1,) C.(,1) D.(2,2)5、(4分)五边形的内角和是()A.180° B.360° C.540° D.720°6、(4分)与-3A.6 B.-9 C.12 D.7、(4分)一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限8、(4分)如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若是的小数部分,则的值是__________.10、(4分)如图,在▱ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为________
.11、(4分)如图所示,数轴上点A所表示的数为a,则a的值是____.12、(4分)我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)13、(4分)如图所示,已知AB=6,点C,D在线段AB上,AC=DB=1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.三、解答题(本大题共5个小题,共48分)14、(12分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?15、(8分)某市联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A,B两种套餐收费一样?(3)什么情况下A套餐更省钱?16、(8分)已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.求证:AP=EF.17、(10分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.18、(10分)如图,在平面直角坐标系中,直线,与反比例函数在第一象限内的图象相交于点(1)求该反比例函数的表达式;(2)将直线沿轴向上平移个单位后与反比例函数在第一象限内的图象相交于点,与轴交于点,若,连接,.①求的值;②判断与的位置关系,并说明理由;(3)在(2)的条件下,在射线上有一点(不与重合),使,求点的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x,y,那么=_____.20、(4分)如图,在菱形ABCD中,AC、BD交于点O,BC=5,若DE∥AC,CE∥BD,则OE的长为_____.21、(4分)将直线沿y轴向上平移5个单位长度后,所得图象对应的函数关系式为_________.22、(4分)方程=0的解是___.23、(4分)如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)二、解答题(本大题共3个小题,共30分)24、(8分)如图,图1、图2是两张大小完全相同的6×6方格纸,每个小方格的顶点叫做格点,以格点为顶点的多边形叫做格点多边形.网格中有一个边长为2的格点正方形,按下列要求画出拼图后的格点平行四边形(用阴影表示)(1)把图1中的格点正方形分割成两部分,再通过图形变换拼成一个平行四边形,在图1中画出这个格点平行四边形;(2)把图2中的格点正方形分割成三部分,再通过图形变换拼成一个平行四边形,在图2中画出这个格点平行四边形.25、(10分)已知a=,求的值.26、(12分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.(1)甲网店销售的商品的成本为30元/件,网上标价为80元/件.“双十一”购物活动当天,甲网店连续两次降价销售商品吸引顾客,问该店平均每次降价率为多少时,才能使商品的售价为39.2元/件?(2)乙网店销售一批名牌衬衫,平均每天销售20件,每件盈利40元,为了扩大销售,增加盈利减少库存,商场决定采取适当的降价措施,经调查发现,如果每件降价1元,则每天可多售2件.商场若想每天盈利1200元,每件衬衫应降价多少元?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据一次函数的性质结合k、b的值即可确定答案.【详解】∵k=5>0,∴一次函数y=5x-4的图象经过第一、三象限,∵b=-4<0,∴一次函数y=5x-4的图象与y轴的交点在x轴下方,∴一次函数y=5x-4的图象经过第一、三、四象限,故选C.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2、A【解析】
过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【详解】解:如图,过点D作DH⊥AC于H,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
在Rt△DEF和Rt△DGH中,,
∴Rt△DEF≌Rt△DGH(HL),
∴S△EDF=S△GDH,设面积为S,
同理Rt△ADF≌Rt△ADH,
∴S△ADF=S△ADH,
即38+S=50-S,
解得S=1.
故选A.本题考查角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,解题的关键是作辅助线构造出全等三角形并利用角平分线的性质.3、B【解析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.A、D、C均符合是平行四边形的条件,B则不能判定是平行四边形.故选B.4、C【解析】
过点C作CE垂直x轴于点E.先证明△ODB为等边三角形,求出OD、DB长,然后根据∠DCB=30°,求出CD的长,进而求出OC,最后求出OE,CE,即求出点C坐标.【详解】.解:如图,过点C作CE垂直x轴于点E.∵A(2,﹣2),∴OB=2,AB=2,∵∠ABO=∠CBD=90°,∴∠DBO=∠CBA=60°,∵BO=BD,∴∠D=DOB=60°,DO=DB=BO=2,∴∠BCD=30°,CD=2BD=4,∴CO=CD﹣OD=4﹣2=2,∵∠COE=90°﹣∠COy=90°﹣60°=30°∴CE=OC=1,OE=,∴C(,1).故选C.本题考查坐标与图形性质,熟练运用30度角直角三角形性质是解题的关键.5、C【解析】
根据n边形的内角和为:,且n为整数,求出五边形的内角和是多少度即可.【详解】解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选:C.此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n边形的内角和为:,且n为整数.6、C【解析】
先对各个选项中的二次根式化简为最简二次根式(被开方数中不含分母且被开方数中不含有开得尽方的因数或因式),再在其中找-3的同类二次根式(化成最简二次根式后的被开方数相同,这样的二次根式叫做同类二次根式.)【详解】A.6为最简二次根式,且与-3B.-9=-3,与-C.12=23,与D.-15为最简二次根式,且与-3故选C.本题考查二次根式的加减,能将各个选项中根式化简为最简二次根式,并能找对同类二次根式是本题的关键.7、B【解析】根据一次函数的性质即可得到结果.,图象经过一、三、四象限,不经过第二象限,故选B.8、B【解析】
根据平行四边形的判定方法一一判断即可;【详解】解:A、由AE=CF,可以推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;B、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;故选:B.本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
先估计的近似值,再求得m,代入计算即可.【详解】∵是的小数部分∴m=-1把m代入得故答案为1.此题主要考查了代数式,熟练掌握无理数是解题的关键.10、2【解析】
先由平行四边形对边相等得AD=BC,作DE⊥AE,由题意可知△ADE为等腰直角三角形,根据勾股定理可以求出DE的长度,即AB和CD之间的距离.【详解】如图,过D作DE⊥AB交AB于E,∵四边形ABCD为平行四边形,∴AD=BC=2,∵∠A=45∴△ADE为等腰直角三角形,∴AE=DE,根据勾股定理得AE2∴2DE∴DE∴DE=2即AB和CD之间的距离为2,故答案为:2本题考查了平行四边形的性质,勾股定理,熟练利用勾股定理求直角三角形中线段长是解题的关键.11、【解析】
根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.【详解】∵直角三角形的两直角边为1,2,∴斜边长为,那么a的值是:﹣.故答案为.此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.12、中位数【解析】
七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,【详解】解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.故答案为:中位数.考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.13、1【解析】
分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN==1,∴点G移动路径的长是1,故答案为:1.本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.三、解答题(本大题共5个小题,共48分)14、(1);(2)20分钟.【解析】
(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.15、(1)y1=1.1x+15;y2=1.15x;(2)311;(3)当月通话时间多于311分钟时,A套餐更省钱.【解析】试题分析:(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选择A.试题解析:解:(1)A套餐的收费方式:y1=1.1x+15;B套餐的收费方式:y2=1.15x;(2)由1.1x+15=1.15x,得到x=311,答:当月通话时间是311分钟时,A、B两种套餐收费一样;(3)当月通话时间多于311分钟时,A套餐更省钱.考点:一次函数的应用.16、见试题解析【解析】试题分析:利用正方形的关于对角线成轴对称,利用轴对称的性质可得出EF=AP.证明:如图,连接PC,∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=PC,所以EF=AP.17、(3)a=,方程的另一根为;(2)答案见解析.【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.【详解】(3)将x=2代入方程,得,解得:a=.将a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根为;(2)①当a=3时,方程为2x=3,解得:x=3.②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.当a=2时,原方程为:x2+2x+3=3,解得:x3=x2=-3;当a=3时,原方程为:-x2+2x-3=3,解得:x3=x2=3.综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.18、(1);(2)①;②;(3).【解析】
(1)先确定出点A坐标,再用待定系数法求出反比例函数解析式;
(2)①先求出点B坐标即可得出结论;②利用勾股定理的逆定理即可判断;
(3)利用相似三角形的性质得出AP,进而求出OP,再求出∠AOH=30°,最后用含30°的直角三角形的性质即可得出结论.【详解】解:(1)∵点在直线,∴,∴,∴点,∵点在反比例函数上,∴,∴;(2)①作轴于,轴于.∴,∵,∴,∴,∴,∴,∴,∴,∴设的解析式为,∵经过点,∴.∴直线的解析式为,∴.②∵,,∴,,,∴,∴,∴.(3)如图∵,,由(2)知,,即,∴,∵,∴,过点作轴于∵,∴,,在中,∴,∴过点作轴于,在中,,,∴,,∴.此题是反比例函数综合题,主要考查了待定系数法,锐角三角函数的意义,相似三角形的性质,含30°角的直角三角形的性质,解(1)的关键是求出点A的坐标,解(2)的关键是求出点B的坐标,解(3)的关键是求出OP,是一道中等难度的中考常考题.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
根据题意,结合图形求出xy与的值,原式利用完全平方公式展开后,代入计算即可求出其值.【详解】解:根据勾股定理可得=52,
四个直角三角形的面积之和是:×4=52-4=48,
即2xy=48,
∴==52+48=1.
故答案是:1.本题主要考查了勾股定理,以及完全平方公式的应用,根据图形的面积关系,求得和xy的值是解题的关键.20、1【解析】
由菱形的性质可得BC=CD=1,AC⊥BD,由题意可证四边形ODEC是矩形,可得OE=CD=1.【详解】解:∵四边形ABCD是菱形,∴BC=CD=1,AC⊥BD,∵DE∥AC,CE∥BD,∴四边形ODEC是平行四边形,且AC⊥BD,∴四边形ODEC是矩形,∴OE=CD=1,故答案为1.本题考查了菱形的性质,矩形的判定和性质,证明四边形ODEC是矩形是解题的关键.21、【解析】分析:直接根据“上加下减”的原则进行解答即可.详解:由“上加下减”的原则可知,直线y=-2x﹣2向上平移5个单位,所得直线解析式是:y=-2x﹣2+5,即y=-2x+1.故答案为:y=-2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.22、x=5.【解析】
把两边都平方,化为整式方程求解,注意结果要检验.【详解】方程两边平方得:(x﹣3)(x﹣5)=0,解得:x1=3,x2=5,经检验,x2=5是方程的解,所以方程的解为:x=5.本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.23、①②③④【解析】分析:分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.详解:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故答案为①②③④.点睛:本题考查内容较多,由BC=EC,得∠CEB=∠CBE,再由平行四边形的性质得∠CEB=∠EBF,可得BE平分∠CBF;再由等腰三角形的判定与性质可得CF平分∠DCB,BC=FB;由线段垂直平分线的判定可得PF=PC.二、解答题(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 垄断竞争市场的产品差异与价格决策教学课件
- 《课件展示的必要性》课件
- 《小学生急救常识》课件
- QC工具及数理统计方法概述
- 2025年浙江b类申论真题及答案
- 《通货膨胀与股市之间的关系》课件
- 《基础生命支持设备的操作及CPR培训课件》
- 《商场前期财务管理》课件
- 《冷冻烘焙食品》课件
- 环保教育活动方案
- 2023年教师基本功市级考核初中物理试卷
- PPAP项目计划表模板
- 期货指标公式大全准确率最高的期货指标文华期货软件指
- 10kV线路巡视检查表
- DB43T 2270-2021 湖南省美丽乡村评价规范
- GB/T 2031-2018船用消防接头
- 《无人机组装与调试》课件 第一章
- 剪映短视频剪辑进阶培训课件
- MK3酶标仪使用手册
- 博腾变频器说明书
- 沥青混凝土拌合站吊装计算书
评论
0/150
提交评论