广东省肇庆市2025届高一上数学期末考试试题含解析_第1页
广东省肇庆市2025届高一上数学期末考试试题含解析_第2页
广东省肇庆市2025届高一上数学期末考试试题含解析_第3页
广东省肇庆市2025届高一上数学期末考试试题含解析_第4页
广东省肇庆市2025届高一上数学期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省肇庆市2025届高一上数学期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则角的终边所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限2.今有一组实验数据如下:x23456y1.52.012.985.028.98现准备用下列函数中的一个近似地表示这些数据所满足的规律,其中最接近的一个是()A. B.C. D.3.设,,,则,,三者的大小关系是()A. B.C. D.4.已知实数,,,则,,的大小关系为()A. B.C. D.5.若,,,则a,b,c的大小关系为()A. B.C. D.6.函数(,且)的图象恒过定点,且点在角的终边上,则()A. B.C. D.7.下列函数中,既是奇函数又存在零点的函数是()A. B.C. D.8.设函数f(x)=若,则实数的取值范围是()A.B.C.D.9.已知集合,则()A. B.C. D.10.已知函数以下关于的结论正确的是()A.若,则B.的值域为C.在上单调递增D.的解集为二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在R上的奇函数,当时,,则在R上的表达式是________12.在中,,则_____________13.若定义域为的函数满足:对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,则m的最大值为______.(是自然对数的底)14.计算_______.15.已知扇形弧长为20cm,圆心角为,则该扇形的面积为___________.16.若函数在区间上是增函数,则实数取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象过点(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若为偶函数,求实数的值18.已知函数是函数图象的一条对称轴.(1)求的最大值,并写出取得最大值时自变量的取值集合;(2)求在上的单调递增区间.19.已知函数.(Ⅰ)求的单调区间;(Ⅱ)求函数的对称轴和对称中心.20.已知函数是定义域为上的奇函数,且(1)求的解析式;(2)用定义证明:在上增函数.21.已知的顶点,边上的中线所在的直线方程为,边上的高所在的直线方程为.(1)求点的坐标;(2)求所在直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】化,可知角的终边所在的象限.【详解】,将逆时针旋转即可得到,角的终边在第三象限.故选:C【点睛】本题主要考查了象限角的概念,属于容易题.2、B【解析】根据表格中的数据,作出散点图,结合选项和函数的单调性,逐项判定,即可求解.【详解】根据表格中的数据,作出散点图,如图所示,根据散点图可知,随着的增大,的值增大,并且增长速度越来越快,结合选项:函数增长速度越来越缓慢,不符合题意;函数增长速度越来越快,符合题意;函数,增长速度不变,不符合题意;而函数,当时,可得;当时,可得,此时与真实数据误差较大,所以最接近的一个函数是.故选:B.3、D【解析】根据对数的运算变形、,再根据对数函数的性质判断即可;【详解】解:,,因为函数在定义域上单调递增,且,所以,即,故选:D4、A【解析】利用指数函数和对数函数的单调性比较a三个数与0、1的大小关系,由此可得出a、b、c大小关系.【详解】解析:由题,,,即有.故选:A.5、A【解析】根据指数函数和对数函数的单调性进行判断即可.【详解】∵,∴,∴,,,∴.故选:A6、D【解析】根据对数型函数恒过定点得到定点,再根据点在角的终边上,由三角函数的定义得,即可得到答案.【详解】由于函数(,且)的图象恒过定点,则,点,点在角的终边上,.故选:D.7、A【解析】判断函数的奇偶性,可排除选项得出正确答案【详解】因为是偶函数,故B错误;是非奇非偶函数,故C错误;是非奇非偶函数,故D错误;故选:A.8、C【解析】由于的范围不确定,故应分和两种情况求解.【详解】当时,,由得,所以,可得:,当时,,由得,所以,即,即,综上可知:或.故选:C【点睛】本题主要考查了分段函数,解不等式的关键是对的范围讨论,分情况解,属于中档题.9、C【解析】根据并集的定义计算【详解】由题意故选:C10、B【解析】A选项逐段代入求自变量的值可判断;B选项分别求各段函数的值域再求并集可判断;C选项取特值比较大小可判断不单调递增;D选项分别求各段范围下的不等式的解集求并集即可判断.【详解】解:A选项:当时,若,则;当时,若,则,故A错误;B选项:当时,;当时,,故的值城为,B正确;C选项:当时,,当时,,在上不单调递增,故C错误;D选项:当时,若,则;当时,若,则,故的解集为,故D错误;故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据奇函数定义求出时的解析式,再写出上的解析式即可【详解】时,,,所以故答案为:【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键12、【解析】先由正弦定理得到,再由余弦定理求得的值【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题13、##【解析】不妨设三边的大小关系为:,利用函数的单调性,得出,,的大小关系,作为三角形三边则有任意两边之和大于第三边,再利用基本不等式求出边的范围得出的最大值即可.【详解】在上严格增,所以,不妨设,因为对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,所以,因为,所以,因为对任意都成立,所以,所以,所以,所以,所以m的最大值为故答案为:.14、【解析】利用指数的运算法则求解即可.【详解】原式.故答案为:.【点睛】本题主要考查了指数的运算法则.属于容易题.15、【解析】求出扇形的半径后,利用扇形的面积公式可求得结果.【详解】由已知得弧长,,所以该扇形半径,所以该扇形的面积.故答案为:16、【解析】令,由题设易知在上为增函数,根据二次函数的性质列不等式组求的取值范围.【详解】由题设,令,而为增函数,∴要使在上是增函数,即在上为增函数,∴或,可得或,∴的取值范围是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)函数图象过,代入计算可求出的值,结合对数函数的性质可求出函数的值域;(2)构造函数,求出它在上的值域,即可求出的取值范围;(3)利用偶函数的性质,即可求出【详解】(1)因为函数图象过点,所以,解得.则,因为,所以,所以函数的值域为.(2)方程有实根,即,有实根,构造函数,则,因为函数在R上单调递减,而在(0,)上单调递增,所以复合函数是R上单调递减函数所以在上,最小值,最大值为,即,所以当时,方程有实根(3),是R上的偶函数,则满足,即恒成立,则恒成立,则恒成立,即恒成立,故,则恒成立,所以.【点睛】本题考查了函数的奇偶性的应用,及对数函数的性质,属于中档题18、(1),;,(2)【解析】(1)化简得,根据对称轴可得的值,进而根据正弦函数的性质可得最值;(2)根据正弦函数的性质可得在上的单调递增区间【小问1详解】由已知又是函数图象的一条对称轴,所以,得,,即,,此时,即,,此时,即,【小问2详解】,则,当时,即时,单调递增,在上的单调递增区间为.19、(1)单调递增区间为,单调递减区间为:;(2)对称中心为:,对称轴方程为:.【解析】详解】试题分析:(1)将看作一个整体,根据余弦函数的单调区间求解即可.(2)将看作一个整体,根据余弦函数的对称中心和对称轴建立方程可求得函数的对称轴和对称中心试题解析:(1)由,得,∴函数的单调递增区间为;由,得,∴函数的单调递减区间为(2)令,得,∴函数图象的对称轴方程为:.令,得,∴函数图象的对称中心为.20、(1);(2)证明见解析.【解析】(1)利用奇函数可求,然后利用可求,从而可得解析式;(2)先设量,作差,变形,然后判定符号,可得单调性.【详解】(1)因为为奇函数,所以,即;因为,所以,即;所以.为奇函数综上,(2)证明:任取,设,;因为,,所以,,所以,故在上是增函数.【点睛】本题主要考查函数解析式的求解和单调性的证明,明确函数单调性的证明步骤是求解的关键,侧重考查数学抽象和逻辑推理的核心素养.21、(1)(2)【解析】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论