版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省深圳市耀华实验学校高二数学第一学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.202.已知中,内角,,的对边分别为,,,,.若为直角三角形,则的面积为()A. B.C.或 D.或3.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件4.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A. B.C. D.5.数列满足且,则的值是()A.1 B.4C.-3 D.66.已知动点满足,则动点的轨迹是()A.椭圆 B.直线C.线段 D.圆7.在平面直角坐标系中,椭圆的左、右焦点分别为,,过且垂直于轴的直线与交于,两点,与轴交于点,,则的离心率为()A. B.C. D.8.已知实数,满足,则的最小值是()A. B.C. D.9.在四面体中,,,,且,,则等于()A. B.C. D.10.执行如图所示的程序框图,若输出的,则输人的()A. B.或C. D.或11.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A. B.C. D.12.已知直线与直线平行,则实数a值为()A.1 B.C.1或 D.二、填空题:本题共4小题,每小题5分,共20分。13.若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为,则的值为________14.已知圆,直线与圆C交于A,B两点,且,则______15.抛物线的焦点到准线的距离等于__________.16.已知向量,,若向量与向量平行,则实数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,水平桌面上放置一个棱长为4的正方体的水槽,水面高度恰为正方体棱长的一半,在该正方体侧面有一个小孔(小孔的大小忽略不计)E,E点到CD的距离为3,若该正方体水槽绕CD倾斜(CD始终在桌面上).(1)证明图2中的水面也是平行四边形;(2)当水恰好流出时,侧面与桌面所成的角的大小.18.(12分)已知二次函数.(1)若时,不等式恒成立,求实数a的取值范围;(2)解关于x的不等式(其中).19.(12分)已知椭圆的左、右焦点分别为,,且椭圆过点,离心率,为坐标原点,过且不平行于坐标轴的动直线与有两个交点,,线段的中点为.(1)求的标准方程;(2)记直线斜率为,直线的斜率为,证明:为定值;(3)轴上是否存在点,使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.20.(12分)数列的前n项和为,(1)求数列的通项公式;(2)令,求数列的前n项和21.(12分)命题p:关于x的不等式对一切恒成立;命题q:函数在上递增,若为真,而为假,求实数的取值范围22.(10分)如图所示,四棱锥的底面为直角梯形,,,,,底面,为的中点(1)求证:平面平面;(2)求点到平面的距离
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.2、C【解析】由正弦定理化角为边后,由余弦定理求得,然后分类讨论:或求解【详解】由正弦定理,可化为:,即,所以,,所以,又为直角三角形,若,则,,,,若,则,,,故选:C3、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D4、A【解析】由题得c=1,再根据△MF2N的周长=4a=8得a=2,进而求出b的值得解.【详解】∵F1(-1,0),F2(1,0)是椭圆的两个焦点,∴c=1,又根据椭圆的定义,△MF2N的周长=4a=8,得a=2,进而得b=,所以椭圆方程为.故答案为A【点睛】本题主要考查椭圆的定义和椭圆方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.5、A【解析】根据题意,由于,可知数列是公差为-3的等差数列,则可知d=-3,由于=,故选A6、C【解析】根据两点之间的距离公式的几何意义即可判定出动点轨迹.【详解】由题意可知表示动点到点和点的距离之和等于,又因为点和点的距离等于,所以动点的轨迹为线段.故选:7、B【解析】由题意结合几何性质可得为等腰三角形,且,所以,求出的长,结合椭圆的定义可得答案.【详解】如图,由题意轴,轴,则又为的中点,则为的中点,又,则为等腰三角形,且,所以将代入椭圆方程得,,即所以,则由椭圆的定义可得,即则椭圆的离心率故选:B8、A【解析】将化成,即可求出的最小值【详解】由可化为,所以,解得,因此最小值是故选:A9、B【解析】根据空间向量的线性运算即可求解.【详解】解:由题知,故选:B.10、A【解析】根据题意可知该程序框图显示的算法函数为,分和两种情况讨论即可得解.【详解】解:该程序框图显示得算法函数为,由,当时,,方程无解;当时,,解得,综上,若输出的,则输入的.故选:A.11、A【解析】根据题意,设衰分比为,甲分到石,,然后可得和,解出、的值即可【详解】根据题意,设衰分比为,甲分到石,,又由今共有粮食石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得90石,甲、丙所得之和为164石,则,,解得:,,故选:A12、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、±1【解析】由题意得=≠,∴a=-4且c≠-2,则6x+ay+c=0可化为3x-2y+=0,由两平行线间的距离公式,得=,解得c=2或c=-6,∴=±114、-2【解析】将圆的一般方程化为标准方程,结合垂径定理和勾股定理表示出圆心到弦的距离,再由点到直线的距离公式表示出圆心到弦的距离,解方程即可求得的值.【详解】解:将圆的方程化为标准方程可得,圆心为,半径圆C与直线相交于、两点,且,由垂径定理和勾股定理得圆心到直线的距离为,由点到直线距离公式得,所以,解得,故答案为:.15、【解析】先将抛物线方程,转化为标准方程,求得焦点坐标,准线方程即可.【详解】因为抛物线方程是,转化为标准方程得:,所以抛物线开口方向向右,焦点坐标准线方程为:,所以焦点到准线的距离等于.故答案为:【点睛】本题主要考查抛物线的标准方程,还考查了理解辨析的能力,属于基础题.16、2【解析】先求出的坐标,进而根据空间向量平行的坐标运算求得答案.【详解】由题意,,因为,所以存在实数使得.故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由水的体积得出,进而得出,,从而证明图2中的水面也是平行四边形;(2)在平面内,过点作,交于,由四边形是平行四边形,得出侧面与桌面所成的角即侧面与水面所成的角,再由直角三角形的边角关系得出其夹角.【小问1详解】由题意知,水的体积为,如图所示,设正方体水槽倾斜后,水面分别与棱,,,交于,,,,则,水的体积为,,即,,故四边形为平行四边形,即,且又,,,四边形为平行四边形,即图2中的水面也是平行四边形;【小问2详解】在平面内,过点作,交于,则四边形是平行四边形,,,侧面与桌面所成的角即侧面与水面所成的角,即侧面与平面所成的角,即为所求,而,在中,,侧面与桌面所成角的为18、(1)(2)答案见解析【解析】(1)当时将原不等式变形为,根据基本不等式计算即可;(2)将原不等式化为,求出参数a分别取值、、时的解集.【小问1详解】不等式即为:,当时,不等式可变形为:,因为,当且仅当时取等号,所以,所以实数a的取值范围是;【小问2详解】不等式,即,等价于,转化为;当时,因为,所以不等式的解集为;当时,因为,所以不等式的解集为;当时,因为,所以不等式的解集为;综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.19、(1);(2)证明见解析;(3)不存在,理由见解析.【解析】(1)由椭圆所过点及离心率,列方程组,再求解即得;(2)设出点A,B坐标并列出它们满足的关系,利用点差法即可作答;(3)设直线的方程,联立直线与椭圆的方程,借助韦达定理求得,,再结合为等边三角形的条件即可作答.【详解】(1)显然,半焦距c有,即,则,所以椭圆的标准方程为;(2)设,,,,由(1)知,,两式相减得,即,而弦的中点,则有,所以;(3)假定存在符合要求的点P,由(1)知,设直线的方程为,由得:,则,,于是得,从而得点,,因为等边三角形,即有,,因此,,,从而得,整理得,无解,所以在y轴上不存在点,使得为等边三角形.20、(1);(2).【解析】(1)根据给定条件结合“当时,”计算作答.(2)由(1)求出,利用裂项相消法计算得解.【小问1详解】数列的前n项和为,,当时,,当时,,满足上式,则,所以数列的通项公式是【小问2详解】由(1)知,,所以,所以数列的前n项和21、【解析】依题意,可分别求得p真、q真时m的取值范围,再由p∨q为真,而p∧q为假求得实数a的取值范围即可【详解】命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;①若命题p正确,则△=(2a)2﹣42<0,即﹣2<a<2;②命题q:函数f(x)=logax在(0,+∞)上递增⇒a>1,∵p∨q为真,而p∧q为假,∴p、q一真一假,当p真q假时,有,∴﹣2<a≤1;当p假q真时,有,∴a≥2∴综上所述,﹣2<a≤1或a≥2即实数a的取值范围为(﹣2,1]∪[2,+∞)【点睛】本题考查复合命题的真假,分别求得p真、q真时m的取值范围是关键,考查理解与运算能力,属于中档题22、(1)证明见解析(2)【解析】(1)设与交点为,延长交的延长线于点,进而根据证明,再结合底面得,进而证明平面即可证明结论;(2)由得点到平面的距离等于点到平面的距离的,进而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年邯郸职业技术学院单招职业适应性测试模拟试题及答案解析
- 2026年江西枫林涉外经贸职业学院单招职业适应性测试模拟试题及答案解析
- 2026年长沙航空职业技术学院单招职业适应性测试模拟试题及答案解析
- 生物治疗在癌症治疗中的应用
- 2026年河北司法警官职业学院单招职业适应性考试模拟试题及答案解析
- 医疗纠纷预防培训
- 医院供应链管理提升路径
- 医院国际合作科主任谈国际合作交流
- 互联网医疗平台运营与管理
- 医疗护理教育与培训资源整合
- 中学八年级英语重点词汇与语法解析
- 生产车间节能知识培训课件
- 寄售管理制度及流程
- 公共文化服务质量评价指标体系研究-洞察及研究
- 2025年上海市高考英语试卷及参考答案(完整版)
- 管桩(方桩)静压施工风险辨识和分析及应对措施
- 工程春节停复工方案(3篇)
- 招标代理应急处理措施预案
- 知识产权保护风险排查清单模板
- 第一单元任务三《新闻写作》教学设计-2025-2026学年统编版语文八年级上册
- 2025年广西高校教师资格岗前培训考试(高等教育学)历年参考题库含答案详解(5卷)
评论
0/150
提交评论