专题76锐角三角函数(全章直通中考)(提升练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(苏科版)_第1页
专题76锐角三角函数(全章直通中考)(提升练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(苏科版)_第2页
专题76锐角三角函数(全章直通中考)(提升练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(苏科版)_第3页
专题76锐角三角函数(全章直通中考)(提升练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(苏科版)_第4页
专题76锐角三角函数(全章直通中考)(提升练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(苏科版)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题7.6锐角三角函数(全章直通中考)(提升练)单选题(本大题共10小题,每小题3分,共30分)1.(2022·四川广元·统考中考真题)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cos∠APC的值为()A. B. C. D.2.(2022·浙江丽水·统考中考真题)如图,已知菱形的边长为4,E是的中点,平分交于点F,交于点G,若,则的长是(

)A.3 B. C. D.3.(2021·广东广州·统考中考真题)如图,在中,,,,将绕点A逆时针旋转得到,使点落在AB边上,连结,则的值为(

)A. B. C. D.4.(2022·湖南湘潭·统考中考真题)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,为直角三角形中的一个锐角,则(

)A.2 B. C. D.5.(2022·江苏南通·统考中考真题)如图,在中,对角线相交于点O,,若过点O且与边分别相交于点E,F,设,则y关于x的函数图像大致为(

)A.B.C. D.6.(2022·四川宜宾·统考中考真题)如图,在矩形纸片ABCD中,,,将沿BD折叠到位置,DE交AB于点F,则的值为(

)A. B. C. D.7.(2022·四川乐山·统考中考真题)如图,在中,,,点D是AC上一点,连接BD.若,,则CD的长为(

A. B.3 C. D.28.(2022·湖北随州·统考中考真题)如图,已知点B,D,C在同一直线的水平,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,,则建筑物AB的高度为(

)A.B.C. D.9.(2022·山东济南·统考中考真题)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为(

)(精确到1m.参考数据:,,,)A.28m B.34m C.37m D.46m10.(2020·贵州遵义·统考中考真题)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°.类比这种方法,计算tan22.5°的值为()A. B.﹣1 C. D.填空题(本大题共8小题,每小题4分,共32分)11.(2021·广东·统考中考真题)如图,在中,.过点D作,垂足为E,则.12.(2022·江苏常州·统考中考真题)如图,在四边形中,,平分.若,,则.13.(2022·江苏扬州·统考中考真题)在中,,分别为的对边,若,则的值为.14.(2022·江苏连云港·统考中考真题)如图,在正方形网格中,的顶点、、都在网格线上,且都是小正方形边的中点,则.15.(2022·山东济宁·统考中考真题)如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=,则AD的长是.16.(2022·山东烟台·统考中考真题)如图1,△ABC中,∠ABC=60°,D是BC边上的一个动点(不与点B,C重合),DEAB,交AC于点E,EFBC,交AB于点F.设BD的长为x,四边形BDEF的面积为y,y与x的函数图象是如图2所示的一段抛物线,其顶点P的坐标为(2,3),则AB的长为.17.(2023·江苏连云港·统考中考真题)如图,矩形的顶点在反比例函数的图像上,顶点在第一象限,对角线轴,交轴于点.若矩形的面积是6,,则.

18.(2022·内蒙古鄂尔多斯·统考中考真题)如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为.三、解答题(本大题共6小题,共58分)19.(8分)(2023·山东滨州·统考中考真题)先化简,再求值:,其中满足.20.(8分)(2023·四川甘孜·统考中考真题)(1)计算:; (2)解不等式组:②21.(10分)(2023·北京·统考中考真题)如图,在中,点E,F分别在,上,,.

(1)求证:四边形是矩形;(2),,,求的长.22.(10分)(2023·上海·统考中考真题)如图,在中,弦的长为8,点C在延长线上,且.

(1)求的半径;(2)求的正切值.23.(10分)(2023·天津·统考中考真题)综合与实践活动中,要利用测角仪测量塔的高度.如图,塔前有一座高为的观景台,已知,点E,C,A在同一条水平直线上.

某学习小组在观景台C处测得塔顶部B的仰角为,在观景台D处测得塔顶部B的仰角为.(1)求的长;(2)设塔的高度为h(单位:m).①用含有h的式子表示线段的长(结果保留根号);②求塔的高度(取0.5,取1.7,结果取整数).24.(12分)(2023·黑龙江大庆·统考中考真题)如图,二次函数的图象与轴交于A,两点,且自变量的部分取值与对应函数值如下表:

(1)求二次函数的表达式;(2)若将线段向下平移,得到的线段与二次函数的图象交于,两点(在左边),为二次函数的图象上的一点,当点的横坐标为,点的横坐标为时,求的值;(3)若将线段先向上平移3个单位长度,再向右平移1个单位长度,得到的线段与二次函数的图象只有一个交点,其中为常数,请直接写出的取值范围.参考答案:1.B【分析】把AB向上平移一个单位到DE,连接CE,则DE∥AB,由勾股定理逆定理可以证明△DCE为直角三角形,所以cos∠APC=cos∠EDC即可得答案.解:把AB向上平移一个单位到DE,连接CE,如图.则DE∥AB,∴∠APC=∠EDC.在△DCE中,有,,,∴,∴是直角三角形,且,∴cos∠APC=cos∠EDC=.故选:B.【点拨】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键.2.B【分析】过点A作AH垂直BC于点H,延长FG交AB于点P,由题干所给条件可知,AG=FG,EG=GP,利用∠AGP=∠B可得到cos∠AGP=,即可得到FG的长;解:过点A作AH垂直BC于点H,延长FG交AB于点P,由题意可知,AB=BC=4,E是BC的中点,∴BE=2,又∵,∴BH=1,即H是BE的中点,∴AB=AE=4,又∵AF是∠DAE的角平分线,,∴∠FAG=∠AFG,即AG=FG,又∵,,∴PF=AD=4,设FG=x,则AG=x,EG=PG=4x,∵,∴∠AGP=∠AEB=∠B,∴cos∠AGP===,解得x=;故选B.【点拨】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.3.C【分析】由勾股定理求出,并利用旋转性质得出,,,则可求得,再根据勾股定理求出,最后由三角形函数的定义即可求得结果.解:在中,,,,由勾股定理得:.∵绕点A逆时针旋转得到,∴,,.∴.∴在中,由勾股定理得.∴.故选:C.【点拨】本题考查了求角的三角形函数值,掌握三角形函数的概念并利用勾股定理及旋转的性质求解是解题的关键.4.A【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a,则较长的直角边为a+1,再接着利用勾股定理得到关于a的方程,据此进一步求出直角三角形各个直角边的边长,最后求出的值即可.解:∵小正方形与每个直角三角形面积均为1,∴大正方形的面积为5,∴小正方形的边长为1,大正方形的边长为,设直角三角形短的直角边为a,则较长的直角边为a+1,其中a>0,∴a2+(a+1)2=5,其中a>0,解得:a1=1,a2=2(不符合题意,舍去),===2,故选:A.【点拨】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键.5.C【分析】过点O向AB作垂线,交AB于点M,根据含有30°角的直角三角形性质以及勾股定理可得AB、AC的长,再结合平行四边形的性质可得AO的长,进而求出OM、AM的长,设,则,然后利用勾股定理可求出y与x的关系式,最后根据自变量的取值范围求出函数值的范围,即可做出判断.解:如图过点O向AB作垂线,交AB于点M,∵AC⊥BC,∠ABC=60°,∴∠BAC=30°,∵BC=4,∴AB=8,AC=,∵四边形ABCD是平行四边形,∴,∴,∴,设,则,∵,∴,当时,,当时,.且图像是二次函数的一部分故选:C.【点拨】此题主要考查了平行四边形的性质、勾股定理、含有30°角的直角三角形的性质以及二次函数图象等知识,解题关键是求解函数解析式和函数值的范围.6.C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明,得出,,设,则,根据勾股定理列出关于x的方程,解方程得出x的值,最后根据余弦函数的定义求出结果即可.解:∵四边形ABCD为矩形,∴CD=AB=5,AB=BC=3,,根据折叠可知,,,,∴在△AFD和△EFB中,∴(AAS),∴,,设,则,在中,,即,解得:,则,∴,故C正确.故选:C.【点拨】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明,是解题的关键.7.C【分析】先根据锐角三角函数值求出,再由勾股定理求出过点D作于点E,依据三角函数值可得从而得,再由得AE=2,DE=1,由勾股定理得AD=,从而可求出CD.解:在中,,,∴∴由勾股定理得,过点D作于点E,如图,

∵,,∴∴∴∴∵∴∴∴,在中,∴∵∴故选:C【点拨】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE的长是解答本题的关键.8.D【分析】设AB=x,利用正切值表示出BC和BD的长,CD=BCBD,从而列出等式,解得x即可.解:设AB=x,由题意知,∠ACB=α,∠ADB=β,∴,,∵CD=BCBD,∴,∴,即AB=,故选:D.【点拨】本题考查了解直角三角形,熟记锐角三角函数的定义是解题的关键.9.C【分析】在Rt△ABD中,解直角三角形求出,在Rt△ABC中,解直角三角形可求出AB.解:在Rt△ABD中,tan∠ADB=,∴,在Rt△ABC中,tan∠ACB=,∴,解得:m,故选:C.【点拨】本题考查了解直角三角形的应用,熟练掌握正切函数的定义是解题的关键.10.B【分析】作Rt△ABC,使∠C=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,根据构造的直角三角形,设AC=x,再用x表示出CD,即可求出tan22.5°的值.解:作Rt△ABC,使∠C=90°,∠ABC=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,设AC=x,则:BC=x,AB=,CD=,故选:B.【点拨】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.11.【分析】首先根据题目中的,求出ED的长度,再用勾股定理求出AE,即可求出EB,利用平行四边形的性质,求出CD,在Rt△DEC中,用勾股定理求出EC,再作BF⊥CE,在△BEC中,利用等面积法求出BF的长,即可求出.解:∵,∴△ADE为直角三角形,又∵,∴,解得DE=4,在Rt△ADE中,由勾股定理得:,又∵AB=12,∴,又∵四边形ABCD为平行四边形,∴CD=AB=12,AD=BC=5在Rt△DEC中,由勾股定理得:,过点B作BF⊥CE,垂足为F,如图在△EBC中:S△EBC=;又∵S△EBC∴,解得,在Rt△BFC中,,故填:.【点拨】本题考查解直角三角形,平行四边形的性质,勾股定理,三角形的等面积法求一边上的高线,解题关键在于熟练掌握解直角三角形的计算,平行四边形的性质,勾股定理的计算和等面积法求一边上的高.12.【分析】过点作的垂线交于,证明出四边形为矩形,为等腰三角形,由勾股定理算出,,即可求解.解:过点作的垂线交于,,四边形为矩形,,,平分,,,,∴∠CDB=∠CBD,,,,,,故答案为:.【点拨】本题考查了锐角三角函数、矩形、等腰三角形形、勾股定理、平行线的性质,解题的关键是构造直角三角形求解.13.解:如图所示:在中,由勾股定理可知:,,,,,,,即:,求出或(舍去),在中:,故答案为:.【点拨】本题考查了锐角三角函数的概念及勾股定理,熟练掌握锐角三角函数的定义是解答本题的关键.在中,,,.14./0.8【分析】如图所示,过点C作CE⊥AB于E,先求出CE,AE的长,从而利用勾股定理求出AC的长,由此求解即可.解:如图所示,过点C作CE⊥AB于E,由题意得,∴,∴,故答案为:.【点拨】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.15.【分析】如图,连接,设交于点,根据题意可得是的直径,,设,证明,根据相似三角形的性质以及正切的定义,分别表示出,根据,勾股定理求得,根据即可求解.解:如图,连接,设交于点,∵∠ACB=90°∴是的直径,,tan∠CBD=,,在中,,,,,设则,AC=BC,,,中,,,,,又,,,,,,,,解得,,故答案为:.【点拨】本题考查了90°圆周角所对的弦是直径,同弧所对的圆周角相等,正切的定义,相似三角形的性质与判定,勾股定理,掌握以上知识是解题的关键.16.【分析】根据抛物线的对称性知,BC=4,作FH⊥BC于H,当BD=2时,▱BDEF的面积为3,则此时BF=,AB=2BF,即可解决问题.解:∵抛物线的顶点为(2,3),过点(0,0),∴x=4时,y=0,∴BC=4,作FH⊥BC于H,当BD=2时,▱BDEF的面积为3,∵3=2FH,∴FH=,∵∠ABC=60°,∴BF==,∵DEAB,∴AB=2BF=,故答案为:.【点拨】本题主要考查了动点的函数图象问题,抛物线的对称性,平行四边形的性质,特殊角的三角函数值等知识,求出BC=4是解题的关键.17.【分析】方法一:根据的面积为,得出,,在中,,得出,根据勾股定理求得,根据的几何意义,即可求解.方法二:根据已知得出则,即可求解.解:方法一:∵,∴设,则,∴∵矩形的面积是6,是对角线,∴的面积为,即∴在中,即即解得:在中,∵对角线轴,则,∴,∵反比例函数图象在第二象限,∴,方法二:∵,∴设,则,∴,∴,,∵,∴,故答案为:.【点拨】本题考查了矩形的性质,反比例函数的几何意义,余弦的定义,熟练掌握反比例函数的性质是解题的关键.18.4【分析】在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,此时PA+2PB=2==2BF,通过解直角三角形ABF,进一步求得结果.解:如图,在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,此时PA+2PB最小,∴∠AFB=90°∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=,∴∠EAD=∠CAE+∠CAD=30°,∴PF=,∴PA+2PB=2==2BF,在Rt△ABF中,AB=4,∠BAF=∠BAC+∠CAE=45°,∴BF=AB•sin45°=4,∴(PA+2PB)最大=2BF=,故答案为:.【点拨】本题考查了等腰三角形的性质,解直角直角三角形,解题的关键是作辅助线.19.;【分析】先根据分式的加减计算括号内的,然后将除法转化为乘法,再根据分式的性质化简,根据负整数指数幂,特殊角的三角函数值,求得的值,最后将代入化简结果即可求解.解:;∵,即,∴原式.【点拨】本题考查了分式化简求值,解题关键是熟练运用分式运算法则以及负整数指数幂,特殊角的三角函数值进行求解.20.(1);(2)【分析】(1)根据零指数幂与绝对值的意义和特殊角的三角函数值进行计算即可求解;(2)先分别解两个不等式得到和,然后根据大小小大中间找确定不等式组的解集.解:(1)原式.(2)解不等式①,得;解不等式②,得.∴原不等式组的解集为.【点拨】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.也考查了实数的运算.21.(1)见分析;(2)【分析】(1)利用平行四边形的性质求出,证明四边形是平行四边形,然后根据对角线相等的平行四边形是矩形得出结论;(2)证明是等腰直角三角形,可得,然后再解直角三角形求出即可.解:(1)证明:∵四边形是平行四边形,∴,,∵,∴,∴四边形是平行四边形,∵,∴平行四边形是矩形;(2)解:由(1)知四边形是矩形,∴,∵,,∴是等腰直角三角形,∴,又∵,∴,∴,∴.【点拨】本题考查了平行四边形的判定和性质,矩形的判定和性质以及解直角三角形,熟练掌握相关判定定理和性质定理是解题的关键.22.(1)5;(2)【分析】(1)延长,交于点,连接,先根据圆周角定理可得,再解直角三角形可得,由此即可得;(2)过点作于点,先解直角三角形可得,从而可得,再利用勾股定理可得,然后根据正切的定义即可得.(1)解:如图,延长,交于点,连接,

由圆周角定理得:,弦的长为8,且,,解得,的半径为.(2)解:如图,过点作于点,

的半径为5,,,,,,即,解得,,,则的正切值为.【点拨】本题考查了圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论