甘肃省武威八中2025届高二数学第一学期期末复习检测模拟试题含解析_第1页
甘肃省武威八中2025届高二数学第一学期期末复习检测模拟试题含解析_第2页
甘肃省武威八中2025届高二数学第一学期期末复习检测模拟试题含解析_第3页
甘肃省武威八中2025届高二数学第一学期期末复习检测模拟试题含解析_第4页
甘肃省武威八中2025届高二数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省武威八中2025届高二数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列满足,,则()A.21 B.42C.63 D.842.在正方体中,,则()A. B.C. D.3.过抛物线的焦点的直线交抛物线于不同的两点,则的值为A.2 B.1C. D.44.准线方程为的抛物线的标准方程为()A. B.C. D.5.在三棱锥中,平面,,,,Q是边上的一动点,且直线与平面所成角的最大值为,则三棱锥的外接球的表面积为()A. B.C. D.6.命题“若,都是偶数,则也是偶数”的逆否命题是A.若是偶数,则与不都是偶数B.若是偶数,则与都不是偶数C.若不是偶数,则与不都是偶数D.若不是偶数,则与都不是偶数7.已知实数、满足,则的最大值为()A. B.C. D.8.下列双曲线中,以为一个焦点,以为一个顶点的双曲线方程是()A. B.C. D.9.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D10.已知抛物线:,焦点为,若过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则长为A.3 B.4C.7 D.1011.函数在其定义域内可导,的图象如图所示,则导函数的图象为A. B.C. D.12.已知双曲线的右焦点为,以为圆心,以为半径的圆与双曲线的一条渐近线交于,两点,若(为坐标原点),则双曲线的离心率为().A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列的各项均为实数,其前项和为,若,,则__________.14.已知函数是上的奇函数,,对,成立,则的解集为_________15.已知数列的前项和.则数列的通项公式为_______.16.若数列的前n项和,则其通项公式________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数其中.(1)当时,求函数的单调区间;(2)当时,函数有两个零点,,满足,证明.18.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,,,△ABC的面积为(1)求a;(2)若D为BC边上一点,且∠BAD=,求∠ADC的正弦值19.(12分)设函数,其中,为自然对数的底数.(1)讨论单调性;(2)证明:当时,.20.(12分)已知函数.(1)求的单调区间;(2)求函数在区间上的最大值与最小值.21.(12分)已知数列的前n项和为,且满足(1)证明数列是等比数列;(2)若数列满足,证明数列的前n项和22.(10分)如图①,直角梯形中,,,点,分别在,上,,,将四边形沿折起,使得点,分别到达点,的位置,如图②,平面平面,.(1)求证:平面平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设等比数列公比为q,根据给定条件求出即可计算作答.【详解】等比数列公比为q,由得:,即,而,解得,所以.故选:D2、A【解析】根据空间向量基本定理,结合空间向量加法的几何意义进行求解即可.【详解】因为,而,所以有,故选:A3、D【解析】本题首先可以通过直线交抛物线于不同的两点确定直线的斜率存在,然后设出直线方程并与抛物线方程联立,求出以及的值,然后通过抛物线的定义将化简,最后得出结果【详解】因为直线交抛物线于不同的两点,所以直线的斜率存在,设过抛物线的焦点的直线方程为,由可得,,因为抛物线的准线方程为,所以根据抛物线的定义可知,,所以,综上所述,故选D【点睛】本题考查了抛物线的相关性质,主要考查了抛物线的定义、过抛物线焦点的直线与抛物线相交的相关性质,考查了计算能力,是中档题4、D【解析】的准线方程为.【详解】的准线方程为.故选:D.5、C【解析】由平面,直线与平面所成角的最大时,最小,也即最小,,由此可求得,从而得,得长,然后取外心,作,取H为的中点,使得,则易得,求出的长即为外接球半径,从而可得面积【详解】三棱锥中,平面,直线与平面所成角为,如图所示;则,且的最大值是,,的最小值是,即A到的距离为,,,在中可得,又,,可得;取的外接圆圆心为,作,取H为的中点,使得,则易得,由,解得,,,,由勾股定理得,所以三棱锥的外接球的表面积是.【点睛】本题考查求球的表面积,解题关键是确定球的球心,三棱锥的外接球心在过各面外心且与此面垂直的直线上6、C【解析】命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题7、A【解析】作出可行域,利用代数式的几何意义,利用数形结合可求得的最大值.【详解】作出不等式组所表示的可行域如下图所示:联立可得,即点,代数式的几何意义是连接可行域内一点与定点连线的斜率,由图可知,当点在可行域内运动时,直线的倾斜角为锐角,当点与点重合时,直线的倾斜角最大,此时取最大值,即.故选:A.8、C【解析】设出双曲线方程,根据题意,求得,即可选择.【详解】因为双曲线的一个焦点是,故可设双曲线方程为,且;又为一个顶点,故可得,解得,则双曲线方程为:.故选:.9、A【解析】由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解.【详解】因,,,选项A,,,若A,B,D三点共线,则,即,解得,故该选项正确;选项B,,,若A,B,C三点共线,则,即,解得不存,故该选项错误;选项C,,,若B,C,D三点共线,则,即,解得不存在,故该选项错误;选项D,,,若A,C,D三点共线,则,即,解得不存在,故该选项错误;故选:A.10、D【解析】利用抛物线的定义,把的长转化为点到准线的距离的和得解【详解】解:抛物线:,焦点为,过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则故选D【点睛】本题考查抛物线定义的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.11、D【解析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.12、A【解析】设双曲线的一条渐近线方程为,为的中点,可得,由,可知为的三等分点,用两种方式表示,可得关于的方程组,结合即可得到双曲线的离心率.【详解】设双曲线的一条渐近线方程为,为的中点,可得,由到渐近线的距离为,所以,又,所以,因为,所以,整理可得:,即,所以,可得,所以,所以双曲线的离心率为,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】分公比和两种情况讨论,结合,,即可得出答案.【详解】解:设等比数列的公比为,当,由,,不合题意,当,由,得,综上所述.故答案为:1.14、【解析】根据题意可以设,求其导数可知在上的单调性,由是上的奇函数,可知的奇偶性,进而可知在上的单调性,由可知的零点,最后分类讨论即可.【详解】设,则对,,则在上为单调递增函数,∵函数是上的奇函数,∴,∴,∴偶函数,∴在上为单调递减函数,又∵,∴,由已知得,所以当时,;当时,;当时,;当时,;若,则;若,则或,解得或或;则的解集为.故答案为:.15、【解析】根据公式求解即可.【详解】解:当时,当时,因为也适合此等式,所以.故答案为:16、【解析】由和计算【详解】由题意,时,,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间,无递减区间;(2)证明见解析【解析】(1)求出函数的导数,从而判断其正负,确定函数的单调区间;(2)根据题意可得到,进而变形为,然后换元令,将证明的问题转换为成立的问题,从而构造新函数,求新函数的导数,判断其单调性,求其最值,进而证明不等式成立.【小问1详解】时,,,令,当时,,当时,,故,则,故是单调递增函数,即的单调递增区间为,无递减区间;【小问2详解】当时,函数有两个零点,,满足,即,所以,则,令,由于,则,则x2=tx故,要证明,只需证明,即证,设,令,则,当时,,即在时为增函数,故,即,所以在时为增函数,即,即,故,即.【点睛】本题考查了利用导数求函数的单调区间以及涉及到零点的不等式的证明问题,解答时要注意导数的应用,主要是根据导数的正负判断函数的单调性,进而求函数极值或最值,解答的关键时对函数式或者不等式进行合理的变形,进而能构造新的函数,利用新的函数的单调性或最值达到证明不等式成立的目的m.18、(1)(2)【解析】(1)利用面积公式及余弦定理可求解;(2)由正弦定理得到,再运用同角函数的关系得到,最后运用正弦的两角和公式求解即可.【小问1详解】∵,,,∴由余弦定理:,∴【小问2详解】在中,由正弦定理得,∴,易知B为锐角,∴,∴19、(1)答案见解析(2)答案见解析【解析】(1)求导数,分和,两种情况讨论,即可求得的单调性;(2)令,利用导数求得单调递增,结合,得到,进而证得.【详解】(1)由函数,可得,当时,,在内单调递减;当时,由有,当时,,单调递减;当时,,单调递增.(2)证明:令,则,当时,,单调递增,因为,所以,即,当时,可得,即【点睛】利用导数证明不等式常见类型及解题策略(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.20、(1)单调递增区间为;单调减区间为和;(2);.【解析】(1)求出导函数,令,求出单调递增区间;令,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解.【详解】1函数的定义域是R,,令,解得令,解得或,所以的单调递增区间为,单调减区间为和;2由在单调递减,在单调递增,所以,而,,故最大值是.21、(1)证明见解析(2)证明见解析【解析】(1)可根据已知的与的递推关系,利用求解出数列的首项,然后当时,递推做差,利用消掉,即可得到与之间的关系,从而完成证明;(2)利用第(1)问求解出的数列的通项公式,带入到中,再使用错位相减法进行求和,根据最后计算的结果与比较即可完成证明.【小问1详解】由题意得,当时,,∴,当时,,∴,∵,∴,于是有,故数列是以3为首项,3为公比的等比数列.得证.【小问2详解】由(1)可知,∴,,①,②,②−①得:,∴,∵,故,∴得证.22、(1)证明见解析(2)【解析】(1)根据,,,,易证,再根据平面平面,,得到平面,进而得到,再利用线面垂直的判定定理证明平面即可;(2)根据(1)知,,两两垂直,以,,的方向分别为,,轴的正方向建立空间直角坐标系,分别求得平面的一个法向量和平面的一个法向量,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论