2025届湖南省湘南教研联盟数学高二上期末达标检测模拟试题含解析_第1页
2025届湖南省湘南教研联盟数学高二上期末达标检测模拟试题含解析_第2页
2025届湖南省湘南教研联盟数学高二上期末达标检测模拟试题含解析_第3页
2025届湖南省湘南教研联盟数学高二上期末达标检测模拟试题含解析_第4页
2025届湖南省湘南教研联盟数学高二上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省湘南教研联盟数学高二上期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与直线,若,则()A.6 B.C.2 D.2.为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行,若主题班会、主题团日这两个阶段相邻,且中心组学习必须安排在前两阶段并与党员活动日不相邻,则不同的安排方案共有()A.10种 B.12种C.16种 D.24种3.若一个正方体的全面积是72,则它的对角线长为()A. B.12C. D.64.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3C.6 D.5.下列说法中正确的是()A.命题“若,则”的否命题是真命题;B.若为真命题,则为真命题;C.“”是“”的充分条件;D.若命题:“,”,则:“,”6.已知双曲线的右焦点为,渐近线为,,过的直线与垂直,且交于点,交于点,若,则双曲线的离心率为()A. B.C.2 D.7.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若,则|QF|=()A. B.C.3 D.28.变量,满足约束条件则的最小值为()A. B.C. D.59.【山东省潍坊市二模】已知双曲线的离心率为,其左焦点为,则双曲线的方程为()A. B.C. D.10.倾斜角为120°,在x轴上截距为-1的直线方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=011.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.12.若,则的虚部为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若不等式的解集是,则的值是___________.14.已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.15.已知数列的前项和.则数列的通项公式为_______.16.若“x2-2x-8>0”是“x<m”的必要不充分条件,则m最大值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,,,,平面,点F在线段上运动.(1)若平面,请确定点F的位置并说明理由;(2)若点F满足,求平面与平面的夹角的余弦值.18.(12分)已知函数.(1)当时,求的极值;(2)设函数,,,求证:.19.(12分)已知点A(1,2)在抛物线C∶上,过点A作两条直线分别交抛物线于点D,E,直线AD,AE的斜率分别为kAD,kAE,若直线DE过点P(-1,-2)(1)求抛物线C的方程;(2)求直线AD,AE的斜率之积.20.(12分)王同学入读某大学金融专业,过完年刚好得到红包6000元,她计划以此作为启动资金进行理投资,每月月底获得的投资收益是该月月初投入资金的20%,并从中拿出1000元作为自己的生活费,余款作为资金全部投入下个月,如此继续.设第n个月月底的投资市值为an.(1)求证:数列{-5000}为等比数列;(2)如果王同学想在第二年过年的时候给奶奶买一台全身按摩椅(商场标价为12899元),将一年后投资市值全部取出来是否足够?21.(12分)已知函数f(x)=x﹣lnx(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)的极值.22.(10分)在①,②这两个条件中任选一个,补充在下面的问题中,并作答.设数列的前项和为,且__________.(1)求数列的通项公式;(2)若,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为直线与直线,且,所以,解得;故选:A2、A【解析】对中心组学习所在的阶段分两种情况讨论得解.【详解】解:如果中心组学习在第一阶段,主题班会、主题团日在第二、三阶段,则其它活动有2种方法;主题班会、主题团日在第三、四阶段,则其它活动有1种方法;主题班会、主题团日在第四、五阶段,则其它活动有1种方法,则此时共有种方法;如果中心组学习在第二阶段,则第一阶段只有1种方法,后面的三个阶段有种方法.综合得不同的安排方案共有10种.故选:A3、D【解析】根据全面积得到正方体的棱长,再由勾股定理计算对角线.【详解】设正方体的棱长为,对角线长为,则有,解得,从而,解得.故选:D4、C【解析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时取等号,的最小值为6,故选:C【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力5、C【解析】A.写出原命题的否命题,即可判断其正误;B.根据为真命题可知的p,q真假情况,由此判断的真假;C.看命题“”能否推出“”,即可判断;D.根据含有一个量词的命题的否定的要求,即可判断该命题的正误.【详解】A.命题“若x=y,则sinx=siny”,其否命题为若“,则”为假命题,因此A不正确;B.命题“”为真命题,则p,q中至少有一个为真命题,当二者为一真一假时,为假命题,故B不正确C.命题“若,则”为真命题,故C正确;D.命题:“,”,为特称命题,其命题的否定:“,”,故D错误,故选:C6、C【解析】由题设易知是的中垂线,进而可得,结合双曲线参数关系及离心率公式求双曲线的离心率即可.【详解】由题意,是的中垂线,故,由对称性得,则,故,∴.故选:C.7、C【解析】过点Q作QQ′⊥l交l于点Q′,利用抛物线定义以及相似得到|QF|=|QQ′|=3.【详解】如图所示:过点Q作QQ′⊥l交l于点Q′,因为,所以|PQ|∶|PF|=3∶4,又焦点F到准线l的距离为4,所以|QF|=|QQ′|=3.故选C.【点睛】本题考查了抛物线的定义应用,意在考查学生的计算能力.8、A【解析】根据不等式组,作出可行域,数形结合即可求z的最小值.【详解】根据不等式组作出可行域如图,,则直线过A(-1,0)时,z取最小值.故选:A.9、D【解析】分析:根据题设条件,列出方程,求出,,的值,即可求得双曲线得标准方程详解:∵双曲线的离心率为,其左焦点为∴,∴∵∴∴双曲线的标准方程为故选D.点睛:本题考查双曲线的标准方程,双曲线的简单性质的应用,根据题设条件求出,,的值是解决本题的关键.10、D【解析】由倾斜角求出斜率,写出斜截式方程,再化为一般式【详解】由于倾斜角为120°,故斜率k=-.又直线过点(-1,0),所以方程为y=-(x+1),即x+y+=0.故选:D.【点睛】本题考查直线方程的斜截式,属于基础题11、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B12、A【解析】根据复数的运算化简,由复数概念即可求解.【详解】因为,所以的虚部为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用和是方程的两根,再利用根与系数的关系即可求出和的值,即可得的值.【详解】由题意可得:方程的两根是和,由根与系数的关系可得:,所以,所以,故答案为:14、【解析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知,由中位线定理可得,设可得,联立方程可解得(舍),点在椭圆上且在轴的上方,求得,所以方法2:焦半径公式应用解析1:由题意可知,由中位线定理可得,即求得,所以.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.15、【解析】根据公式求解即可.【详解】解:当时,当时,因为也适合此等式,所以.故答案为:16、【解析】解不等式,得到或,,根据必要不充分条件,得到是A的真子集,从而求出,得到m的最大值.【详解】,解得:或,所以记或,;若“x2-2x-8>0”是“x<m”的必要不充分条件,则是A的真子集故,所以m最大值为故答案为:-2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)F为BD的中点,证明见解析;(2).【解析】(1)由为的中点,取的中点,连接易证四边形为平行四边形,得到,再利用线面平行的判定定理证明;(2)根据题意可得平面ABC与平面AFC的夹角为二面角,取的中点H为坐标原点,建立空间直角坐标系,分别求得平面的一个法向量,平面的一个法向量,设二面角为,由求解.【小问1详解】为的中点.如图:取的中点,连接∵,分别为,的中点,∴且∵且∴平行且等于∴四边形为平行四边形,则∵平面ABC,平面ABC∴平面ABC【小问2详解】由题意知,平面ABC与平面AFC的夹角为二面角,取的中点H为坐标原点,建立如图所示的空间直角坐标系.因为三角形为等腰三角形,易求,则,,所以,,设平面的一个法向量为,则,即,解得设平面的一个法向量为,则,即,解得设二面角为,则,因为二面角为锐角,所以余弦值为.18、(1),无极大值(2)证明见解析【解析】(1)求出函数的导数,判断函数的单调性,进而确定极值点,求得答案;(2)将要证明的不等式变形为,然后构造函数,利用导数判断其单调性,求其最值,进而证明结论.【小问1详解】当时,,,由得,列表得:1--0+减减极小值增由上表可知,无极大值.;【小问2详解】证明:,即证;∵,则,故只需证,即证令,,得,得,∴在上递增,在上递减∴,∴,∴.19、(1)(2)【解析】(1)代入点即可求得抛物线方程;(2)联立方程后利用韦达定理求出,,,,然后代入即可求得斜率的积.【小问1详解】解:点A(1,2)在抛物线C∶上故【小问2详解】设直线方程为:联立方程,整理得:由题意及韦达定理可得:,20、(1)证明见解析(2)足够【解析】(1)由题意可得出递推关系,变形后利用等比数列的定义求证即可;(2)由(1)利用等比数列的通项公式求出,再求出,再计算即可得出结论.【小问1详解】依题意,第1个月底股票市值则又∴数列是首项为1200,公比为1.2的等比数列.【小问2详解】由(1)知∴∵,所以王同学将一年理财投资所得全部取出来是足够的.21、(1)(2)极小值为,无极大值【解析】(1)求出函数的导函数,再根据导数的几何意义即可求出切线方程;(2)根据导数的符号求出函数的单调区间,再根据极值的定义即可得出答案.【小问1详解】解:,则,,即切线的斜率为0,所以曲线y=f(x)在点(1,f(1))处曲线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论