吉林省吉林市蛟河市一中2025届高一上数学期末预测试题含解析_第1页
吉林省吉林市蛟河市一中2025届高一上数学期末预测试题含解析_第2页
吉林省吉林市蛟河市一中2025届高一上数学期末预测试题含解析_第3页
吉林省吉林市蛟河市一中2025届高一上数学期末预测试题含解析_第4页
吉林省吉林市蛟河市一中2025届高一上数学期末预测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省吉林市蛟河市一中2025届高一上数学期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数=的图象恒过定点,则点的坐标是A.(1,5) B.(1,4)C.(0,4) D.(4,0)2..已知集合,集合,则()A. B.C. D.3.如果,那么下列不等式中,一定成立的是()A. B.C. D.4.函数的最小值为()A. B.3C. D.5.命题A:命题B:(x+2)·(x+a)<0;若A是B的充分不必要条件,则a的取值范围是A.(-∞,-4) B.[4,+∞)C.(4,+∞) D.(-∞,-4]6.郑州地铁1号线的开通运营,极大方便了市民的出行.某时刻从二七广场站驶往博学路站的过程中,10个车站上车的人数统计如下:70,60,60,60,50,40,40,30,30,10.这组数据的平均数,众数,90%分位数的和为()A.125 B.135C.165 D.1707.设函数满足,的零点为,则下列选项中一定错误的是()A. B.C. D.8.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为A. B.C. D.9.若函数图象上所有点的横坐标向右平移个单位,纵坐标保持不变,得到的函数图象关于轴对称,则的最小值为()A. B.C. D.10.在中,为边的中点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为锐角,,,则__________12.如果对任意实数x总成立,那么a的取值范围是____________.13.若,则________.14.在直角坐标系内,已知是圆上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆上存在点,使,其中的坐标分别为,则实数的取值集合为__________15.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鱼的科学家发现大西洋鲑鱼的游速(单位:)可以表示为,其中表示鱼的耗氧量的单位数.当一条大西洋鲑鱼的耗氧量的单位数是其静止时耗氧量的单位数的倍时,它的游速是________16.已知定义在上的函数满足,且当时,.若对任意,恒成立,则实数的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的定义域;(2)若函数,且对任意的,,恒成立,求实数a的取值范围.18.如图所示,是圆柱的母线,是圆柱底面圆的直径,是底面圆周上异于的任意一点,.(1)求证:;(2)求三棱锥体积的最大值,并写出此时三棱锥外接球的表面积.19.已知函数且.(1)若,求的值;(2)若在上的最大值为,求的值.20.已知函数(1)若函数图像关于直线对称,且,求的值;(2)在(1)的条件下,当时,求函数的值域.21.设,已知集合,(1)当时,求;(2)若,且,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】令=,得x=1,此时y=5所以函数=的图象恒过定点(1,5).选A点睛:(1)求函数(且)的图象过的定点时,可令,求得的值,再求得,可得函数图象所过的定点为(2)求函数(且)的图象过的定点时,可令,求得的值,再求得,可得函数图象所过的定点为2、A【解析】先将分别变形,然后根据数值的奇偶判断出的关系,由此求解出的结果.【详解】因为,所以,所以;又因为,所以,所以,又因为表示所有的奇数,表示部分奇数,所以;所以,故选:A.3、D【解析】取,利用不等式性质可判断ABC选项;利用不等式的性质可判断D选项.【详解】若,则,所以,,,ABC均错;因为,则,因为,则,即.故选:D.4、C【解析】运用乘1法,可得,再利用基本不等式求最值即可.【详解】由三角函数的性质知当且仅当,即,即,时,等号成立.故选:C【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、A【解析】记根据题意知,所以故选A6、D【解析】利用公式可求平均数和90%分位数,再求出众数后可得所求的和.【详解】这组数据的平均数为,而,故90%分位数,众数为,故三者之和为,故选:D.7、C【解析】根据函数的解析式,结合零点的存在定理,进行分类讨论判定,即可求解.【详解】由题意,函数的定义域为,且的零点为,即,解得,又因为,可得中,有1个负数、两个正数,或3个都负数,若中,有1个负数、两个正数,可得,即,根据零点的存在定理,可得或;若中,3个都是负数,则满足,即,此时函数的零点.故选:C.8、D【解析】根据正四棱柱的几何特征得:该球的直径为正四棱柱的体对角线,故,即得,所以该球的体积,故选D.考点:正四棱柱的几何特征;球的体积.9、B【解析】由题设可得,根据已知对称性及余弦函数的性质可得,即可求的最小值.【详解】由题设,关于轴对称,∴且,则,,又,∴的最小值为.故选:B.10、B【解析】由平面向量的三角形法则和数乘向量可得解【详解】由题意,故选:B【点睛】本题考查了平面向量的线性运算,考查了学生综合分析,数形结合的能力,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,都是锐角,得出的范围,由和的值,利用同角三角函数的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的余弦函数公式化简计算,即得结果【详解】,都是锐角,,又,,,,则故答案为:.12、【解析】先利用绝对值三角不等式求出的最小值,进而求出a的取值范围.【详解】,当且仅当时等号成立,故,所以a的取值范围是.故答案为:13、【解析】由,根据三角函数的诱导公式进行转化求解即可.详解】,,则,故答案为:.14、【解析】由题意,∴A(3,2)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,∴圆上不相同的两点为B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中点为圆心C(3,4),半径为1,∴⊙C的方程为(x﹣3)2+(y﹣4)2=4过P,M,N的圆的方程为x2+y2=m2,∴两圆外切时,m的最大值为,两圆内切时,m的最小值为,故答案为[3,7]15、【解析】设大西洋鲑鱼静止时的耗氧量为,计算出的值,再将代入,即可得解.【详解】设大西洋鲑鱼静止时的耗氧量为,则,可得,将代入可得.故答案为:.16、【解析】根据题意求出函数和图像,画出图像根据图像解题即可.【详解】因为满足,即;又由,可得,因为当时,所以当时,,所以,即;所以当时,,所以,即;根据解析式画出函数部分图像如下所示;因为对任意,恒成立,根据图像当时,函数与图像交于点,即的横坐标即为的最大值才能符合题意,所以,解得,所以实数的取值范围是:.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)(2,+∞).【解析】(1)使对数式有意义,即得定义域;(2)命题等价于,如其中一个不易求得,如不易求,则转化恒成立,再由其它方法如分离参数法求解或由二次不等式恒成立问题求解【详解】(1)由题可知且,所以.所以的定义域为.(2)由题易知其定义域上单调递增.所以在上的最大值为,对任意的恒成立等价于恒成立.由题得.令,则恒成立.当时,,不满足题意.当时,,解得,因为,所以舍去.当时,对称轴为,当,即时,,所以;当,即时,,无解,舍去;当,即时,,所以,舍去.综上所述,实数a的取值范围为(2,+∞).【点睛】本题考查求对数型复合函数的定义域,不等式恒成立问题.解题时注意转化与化归思想的应用18、(1)见解析;(2).【解析】(1)由圆柱易知平面,所以,由圆的性质易得,进而可证平面;(2)由已知得三棱锥的高,当直角的面积最大时,三棱锥的体积最大,当点在弧中点时最大,此时外接球的直径即可得解.试题解析:(1)证明:∵已知是圆柱的母线,.∴平面∵是圆柱底面圆的直径,是底面圆周上异于的任意一点,∴,又,∴平面又平面(2)解:由已知得三棱锥的高,当直角的面积最大时,三棱锥的体积最大,当点在弧中点时最大,,结合(1)可得三棱锥的外接球的直径即为,所以此时外接球的直径..点睛:一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.19、(1);(2)或.【解析】(1)根据函数奇偶性的定义判断是奇函数,再由即可求解;(2)讨论和时,函数在上的单调性,根据单调性求出最值列方程,解方程可得的值.【小问1详解】因为的定义域为关于原点对称,,所以为奇函数,故.【小问2详解】,若,则单调递减,单调递增,可得为减函数,当时,,解得:,符合题意;若,则单调递增,单调递减,可得为增函数,当时,解得:,符合题意,综上所述:的值为或.20、(1)w=1;(2)[0,].【解析】(1)求出函数的对称轴,求出求的值.(2)根据x的范围,利用三角函数的图像和性质求出f(x)的范围得解.【详解】(1)∵函数f(x)的图象关于直线对称,∴kπ,k∈Z,∴ω=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论