上海市上外附中2025届高二上数学期末学业质量监测模拟试题含解析_第1页
上海市上外附中2025届高二上数学期末学业质量监测模拟试题含解析_第2页
上海市上外附中2025届高二上数学期末学业质量监测模拟试题含解析_第3页
上海市上外附中2025届高二上数学期末学业质量监测模拟试题含解析_第4页
上海市上外附中2025届高二上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市上外附中2025届高二上数学期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左、右焦点分别为,,P为双曲线C上一点,,直线与y轴交于点Q,若,则双曲线C的渐近线方程为()A. B.C. D.2.已知双曲线的方程为,则下列关于双曲线说法正确的是()A.虚轴长为4 B.焦距为C.焦点到渐近线的距离为4 D.渐近线方程为3.若两条直线与互相垂直,则的值为()A.4 B.-4C.1 D.-14.已知x,y满足约束条件,则的最大值为()A.3 B.C.1 D.5.函数极小值为()A. B.C. D.6.已知随机变量X,Y满足,,且,则的值为()A.0.2 B.0.3C.0..5 D.0.67.用斜二测画法画出边长为2的正方形的直观图,则直观图的面积为()A. B.C.4 D.8.如图,在三棱锥中,平面ABC,,,,则点A到平面PBC的距离为()A.1 B.C. D.9.点是正方体的底面内(包括边界)的动点.给出下列三个结论:①满足的点有且只有个;②满足的点有且只有个;③满足平面的点的轨迹是线段.则上述结论正确的个数是()A. B.C. D.10.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A B.C. D.11.如图,空间四边形中,,,,且,,则()A. B.C. D.12.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将车行的30辆大巴车编号为01,02,…,30,采用系统抽样方法抽取一个容量为3的样本,且在某组随机抽得的一个号码为08,则剩下的两个号码依次是__________(按号码从小到大排列)14.曲线在处的切线方程为______15.已知双曲线,的左、右焦点分别为、,且的焦点到渐近线的距离为1,直线与交于,两点,为弦的中点,若为坐标原点)的斜率为,,则下列结论正确的是____________①;②的离心率为;③若,则的面积为2;④若的面积为,则为钝角三角形16.写出一个渐近线的倾斜角为且焦点在y轴上的双曲线标准方程___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆:()的离心率为,递增直线过椭圆的左焦点,且与椭圆交于两点,若,求直线的斜率.18.(12分)如图,在直三棱柱中,,,与交于点,为的中点,(1)求证:平面;(2)求证:平面平面19.(12分)已知直线经过点且斜率为(1)求直线的一般式方程(2)求与直线平行,且过点的直线的一般式方程(3)求与直线垂直,且过点的直线的一般式方程20.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值21.(12分)动点M到点的距离比它到直线的距离小,记M的轨迹为曲线C.(1)求C的方程;(2)已知圆,设P,A,B是C上不同的三点,若直线PA,PB均与圆D相切,若P的纵坐标为,求直线AB的方程.22.(10分)已知函数(1)求在点处的切线方程(2)求直线与曲线围成的封闭图形的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意可设且,即得a、b的数量关系,进而求双曲线C的渐近线方程.【详解】由题设,,,又,P为双曲线C上一点,∴,又,为的中点,∴,即,∴双曲线C的渐近线方程为.故选:B.2、D【解析】根据双曲线的性质逐一判断即可.【详解】在双曲线中,焦点在轴上,,,,所以虚轴长为6,故A错误;焦距为,故B错误;渐近线方程为,故D正确;焦点到渐近线的距离为,故C错误;故选:D.3、A【解析】根据两直线垂直的充要条件知:,即可求的值.【详解】由两直线垂直,可知:,即.故选:A4、A【解析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可.【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.故选:A【点睛】方法点睛:求线性目标函数的最值,当时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.5、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.6、D【解析】利用正态分布的计算公式:,【详解】且又故选:D7、A【解析】画出直观图,求出底和高,进而求出面积.【详解】如图,,,,过点C作CD⊥x轴于点D,则,所以直观图是底为2、高为的平行四边形,所以面积为.故选:A.8、A【解析】设点A到平面PBC的距离为,根据等体积法求解即可.【详解】因为平面ABC,所以,因为,,所以又,,所以,所以,设点A到平面PBC的距离为,则,即,,故选:A9、C【解析】对于①,根据线线平行的性质可知点即为点,因此可判断①正确;对于②,根据线面垂直的判定可知平面,,由此可判定的位置,进而判定②的正误;对于③,根据面面平行可判定平面平面,因此可判断此时一定落在上,由此可判断③的正误.【详解】如图:对于①,在正方体中,,若异于,则过点至少有两条直线和平行,这是不可能的,因此底面内(包括边界)满足的点有且只有个,即为点,故①正确;对于②,正方体中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直线一定落在平面内,由是平面上的动点可知,一定落在上,这样的点有无数多个,故②错误;对于③,,平面,则平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的动点可知,此时一定落在上,即点的轨迹是线段,故③正确,故选:C.10、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线距离为,所以面积的最小值为,最大值为.故选:A11、C【解析】根据空间向量的线性运算即可求解.【详解】因为,又因为,,所以.故选:C12、A【解析】由题意可知,对任意的恒成立,可得出对任意的恒成立,利用基本不等式可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,所以,对任意的恒成立,由基本不等式可得,当且仅当时,等号成立,所以,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、18,28【解析】根据等距抽样的性质确定剩下的两个号码即可.【详解】由于从30辆大巴车中抽取3辆车,故分组间距为10,又第一组的号码为08,所以其它两个号码依次是18,28故答案为:18,28.14、【解析】求得的导数,可得切线的斜率和切点,由斜截式方程可得切线方程【详解】解:的导数为,可得曲线在处的切线斜率为,切点为,即有切线方程为故答案为【点睛】本题考查导数的运用:求切线方程,考查导数的几何意义,直线方程的运用,考查方程思想,属于基础题15、②④【解析】由已知可得,可求,,从而判断①②,求出△的面积可判断③,设,,利用面积求出点的坐标,再求边长,求出可判断④【详解】解:设,,,,可得,,两式相减可得,由题意可得,且,,,,,,故②正确;的焦点到渐近线的距离为1,设到渐近线的距离为,则,即,,故①错误,,若,不妨设在右支上,,又,,则的面积为,故③不正确;设,,,,将代入双曲线,得,,根据双曲线的对称性,不妨取点的坐标为,,,,,为钝角,为钝角三角形.故④正确故答案为:②④16、(答案不唯一)【解析】根据已知条件写出一个符合条件的方程即可.【详解】如,焦点在y轴上,令,得渐近线方程为,其中的倾斜角为.故答案为:(答案不唯一).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、1【解析】根据离心率写出,设出直线为,把直线的方程与椭圆进行联立消,写出韦达定理,再利用,即可解出,进而求出直线的斜率.【详解】,.设递增直线的方程为,把直线的方程与椭圆进行联立:.①,②.③.把③代入①中得④.把④代入②中得...18、(1)证明见解析(2)证明见解析【解析】(1)根据直棱柱的性质、平行四边形的性质,结合三角形中位线定理、线面平行的判定定理进行证明即可;(2)根据直棱柱的性质、菱形的判定定理和性质,结合线面垂直的判定定理、面面垂直的判定定理进行证明即可.【小问1详解】在直三棱柱中,,且四边形平行四边形,又,则为的中点,又为的中点,故,即:,且平面,平面,所以平面;【小问2详解】在直三棱柱中,平面,平面,则,且,,平面,故平面,因为平面,所以,又在平行四边形中,,则四边形菱形,所以,且,平面,故平面,因为平面,所以平面平面.19、(1)(2)(3)【解析】(1)先写点斜式方程,再化一般式,(2)根据平行设一般式,再代点坐标得结果,(3)根据垂直设一般式,再代点坐标得结果.【详解】(1)(2)设所求方程为因为过点,所以(3)设所求方程为因为过点,所以【点睛】本题考查直线方程,考查基本分析求解能力,属基础题.20、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点建立如图所示的空间直角坐标系,则有,,,,,,∴,设面的一个法向量为,则由令,则,又因为面,取作为面的一个法向量,设二面角为,∴,∴,因此二面角的正弦值为21、(1)(2)【解析】(1)由抛物线的定义可得结论;(2)设,得PA的两点式方程为,由在抛物线上,化简直线方程为,然后由圆心到切线的距离等于半径得出的关系式,并利用得出点满足的等式,同理设得方程,最后由直线方程的定义可得直线方程【小问1详解】由题意得动点M到点的距离等于到直线的距离,所以曲线C是以为焦点,为准线的抛物线.设,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论