2025届河北省隆华存瑞中学高二上数学期末质量检测试题含解析_第1页
2025届河北省隆华存瑞中学高二上数学期末质量检测试题含解析_第2页
2025届河北省隆华存瑞中学高二上数学期末质量检测试题含解析_第3页
2025届河北省隆华存瑞中学高二上数学期末质量检测试题含解析_第4页
2025届河北省隆华存瑞中学高二上数学期末质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省隆华存瑞中学高二上数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在棱长为1的正方体中,M是的中点,则点到平面MBD的距离是()A. B.C. D.2.若,在直线l上,则直线l一个方向向量为()A. B.C. D.3.若直线a,b是异面直线,点O是空间中不在直线a,b上的任意一点,则()A.不存在过点O且与直线a,b都相交的直线B.过点O一定可以作一条直线与直线a,b都相交C.过点O可以作无数多条直线与直线a,b都相交D.过点O至多可以作一条直线与直线a,b都相交4.已知双曲线的左焦点为,,为双曲线的左、右顶点,渐近线上的一点满足,且,则双曲线的离心率为()A. B.C. D.5.设P是抛物线上的一个动点,F为抛物线的焦点.若,则的最小值为()A. B.C.4 D.56.围棋起源于中国,据先秦典籍世本记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,规定甲与乙对阵,丙与丁对阵,两场比赛的胜者争夺冠军,根据以往战绩,他们之间相互获胜的概率如下:甲乙丙丁甲获胜概率乙获胜概率丙获胜概率丁获胜概率则甲最终获得冠军的概率是()A.0.165 B.0.24C.0.275 D.0.367.已知等差数列共有项,其中奇数项之和为290,偶数项之和为261,则的值为()A.30 B.29C.28 D.278.设数列的前项和为,数列是公比为2的等比数列,且,则()A.255 B.257C.127 D.1299.已知数列的通项公式为,是数列的最小项,则实数的取值范围是()A. B.C. D.10.直线与直线交于点Q,m是实数,O为坐标原点,则的最大值是()A.2 B.C. D.411.设圆上的动点到直线的距离为,则的取值范围是()A. B.C. D.12.已知抛物线y2=2px(p>0)的焦点为F,准线为l,M是抛物线上一点,过点M作MN⊥l于N.若△MNF是边长为2的正三角形,则p=()A. B.C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.对某市“四城同创”活动中100名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为的数据不慎丢失,则依据此图可估计该市“四城同创”活动中志愿者年龄在的人数为________14.某古典概型的样本空间,事件,则___________.15.已知函数在R上连续且可导,为偶函数且,其导函数满足,则不等式的解集为___.16.函数在点处的切线方程是_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某微小企业员工的年龄分布茎叶图如图所示:(1)求该公司员工年龄的极差和第25百分位数;(2)从该公司员工中随机抽取一位,记所抽取员工年龄在区间内为事件,所抽取员工年龄在区间内为事件,判断事件与是否互相独立,并说明理由;18.(12分)已知椭圆C:的长轴长为,P是椭圆上异于顶点的一个动点,O为坐标原点,A为椭圆C的上顶点,Q为PA的中点,且直线PA与直线OQ的斜率之积恒为-2.(1)求椭圆C的方程;(2)若斜率为k且过上焦点F的直线l与椭圆C相交于M,N两点,当点M,N到y轴距离之和最大时,求直线l的方程.19.(12分)已知点F为抛物线的焦点,点在抛物线上,且.(1)求该抛物线的方程;(2)若点A在第一象限,且抛物线在点A处的切线交y轴于点M,求的面积.20.(12分)如图,在直三棱柱中,,,.M为侧棱的中点,连接,,CM.(1)证明:AC平面;(2)证明:平面;(3)求二面角的大小.21.(12分)已知椭圆与直线相切,点G为椭圆上任意一点,,,且的最大值为3(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同两点E,F,点O为坐标原点,且,当的面积取最大值时,求的取值范围22.(10分)如图,已知抛物线的焦点为,点是轴上一定点,过的直线交与两点.(1)若过的直线交抛物线于,证明纵坐标之积为定值;(2)若直线分别交抛物线于另一点,连接交轴于点.证明:成等比数列.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】等体积法求解点到平面的距离.【详解】连接,,则,,由勾股定理得:,,取BD中点E,连接ME,由三线合一得:ME⊥BD,则,故,设到平面MBD的距离是,则,解得:,故点到平面MBD的距离是.故选:A2、C【解析】利用直线的方向向量的定义直接求解.【详解】因为,在直线l上,所以直线l的一个方向向量为.故选:C.3、D【解析】设直线与点确定平面,由题意可得直线与平面相交或平行.分两种情形,画图说明即可.【详解】点是空间中不在直线,上的任意一点,设直线与点确定平面,由题意可得,故直线与平面相交或平行.(1)若直线与平面相交(如图1),记,①若,则不存在过点且与直线,都相交的直线;②若与不平行,则直线即为过点且与直线,都相交的直线.(2)若直线与平面平行(如图2),则不存在过点且与直线,都相交的直线.综上所述,过点至多有一条直线与直线,都相交.故选:D.4、C【解析】由双曲线的渐近线方程和两点的距离公式,求得点的坐标和,在中,利用余弦定理,求得的关系式,再由离心率公式,计算即可求解.【详解】由题意,双曲线,可得,设在渐近线上,且点在第一象限内,由,解得,即点,所以,在中,由余弦定理可得,可得,即,所以双曲线离心率为.故选:C.【点睛】求解椭圆或双曲线的离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.5、C【解析】作出图形,过点作抛物线准线的垂线,由抛物线的定义得,从而得出,再由、、三点共线时,取最小值得解.【详解】,所以在抛物线的内部,过点作抛物线准线的垂线,由抛物线的定义得,,当且仅当、、三点共线时,等号成立,因此,的最小值为.故选:C.6、B【解析】先求出甲第一轮胜出的概率,再求出甲第二轮胜出的概率,即可得出结果.【详解】甲最终获得冠军的概率,故选:B.7、B【解析】由等差数列的求和公式与等差数列的性质求解即可【详解】奇数项共有项,其和为,∴偶数项共有n项,其和为,∴故选:B8、C【解析】由题设可得,再由即可求值.【详解】由数列是公比为2的等比数列,且,∴,即,∴.故选:C.9、D【解析】利用最值的含义转化为不等式恒成立问题解决即可【详解】解:由题意可得,整理得,当时,不等式化简为恒成立,所以,当时,不等式化简为恒成立,所以,综上,,所以实数的取值范围是,故选:D10、B【解析】求出两直线的交点坐标,结合两点间的距离公式得到,进而可以求出结果.【详解】因为与的交点坐标为所以,当时,,所以的最大值是,故选:B.11、C【解析】求出圆心到直线距离,再借助圆的性质求出d的最大值与最小值即可.【详解】圆的方程化为,圆心为,半径为1,则圆心到直线的距离,即直线和圆相离,因此,圆上的动点到直线的距离,有,,即,即的取值范围是:.故选:C12、C【解析】根据正三角形的性质,结合抛物线的性质进行求解即可.【详解】如图所示:准线l与横轴的交点为,由抛物线的性质可知:,因为若△MNF是边长为2的正三角形,所以,,显然,在直角三角形中,,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先根据频率分布直方图计算出年龄在的频率,从而可计算出年龄在的人数.【详解】年龄在的频率为,所以年龄在的人数为.故答案为:.14、##0.5【解析】根据定义直接计算得到答案.【详解】.故答案为:.15、【解析】由已知条件可得图象关于对称,在上递增,在上递减,然后分四种情况讨论求解即可【详解】因为为偶函数,所以的图象关于轴对称,所以的图象关于对称,因为,所以当时,,当时,,所以在上递增,在上递减,由,得,或,或,或,解得,或,或,或,综上,,所以等式的解集为故答案为:16、【解析】求得函数的导数,得到且,再结合直线的点斜式,即可求解.【详解】由题意,函数,可得,则且,所以在点处切线方程是,即故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极差为;第25百分位数为(2)事件和相互独立,理由见解析【解析】(1)根据定义直接计算极差和百分位数得到答案.(2)计算得到,,,即,得到答案.【小问1详解】员工年龄的极差为,,故第25百分位数为.【小问2详解】,,,故,故事件和相互独立.18、(1)(2)【解析】(1)设点,求出直线、直线的斜率相乘可得,结合可得答案;(2)设直线l的方程为与椭圆方程联立,代入得,设,再利用基本不等式可得答案.【小问1详解】由题意可得,,即,则,设点,∵Q为的中点,∴,∴直线斜率,直线的斜率,∴,又∵,∴,则,解得,∴椭圆C的方程为.【小问2详解】由(1)知,设直线l的方程为,联立化简得,,设,则,易知M,N到y轴的距离之和为,,设,∴,当且仅当即时等号成立,所以当时取得最大值,此时直线l的方程为.19、(1);(2)10.【解析】(1)由根据抛物线的定义求出可得抛物线方程;(2)求出抛物线过点A的切线,得出点M的坐标即可求三角形面积.【小问1详解】由抛物线的定义可知,即,抛物线的方程为.【小问2详解】,且A在第一象限,,即A(4,4),显然切线的斜率存在,故可设其方程为,由,消去得,即,令,解得,切线方程为.令x=0,得,即,又,,.20、(1)证明见详解;(2)证明见详解;(3)【解析】小问1:由于,根据线面平行判定定理即可证明;小问2:以为原点,分别为轴建立空间坐标系,根据向量垂直关系即可证明;小问3:分别求得平面与平面的法向量,根据向量夹角公式即可求解【小问1详解】在直三棱柱中,,且平面,平面所以AC平面;【小问2详解】因为,故以为原点,分别为轴建立空间坐标系如图所示:则,所以则所以又平面,平面故平面;【小问3详解】由,得,设平面的一个法向量为则得又因为平面的一个法向量为所以所以二面角的大小为21、(1)(2)【解析】(1)设点,根据题意,得到,根据向量数量积的坐标表示,得到,根据其最小值,求出,即可得出椭圆方程;(2)设,,,联立直线与椭圆方程,根据韦达定理,由弦长公式,以及点到直线距离公式,求出的面积的最值,得到;得出点的轨迹为椭圆,且点为椭圆的左、右焦点,记,则,得到,根据对勾函数求出最值.【小问1详解】设点,由题意知,所以:,则,当时,取得最大值,即,故椭圆C的标准方程是【小问2详解】设,,,则由得,,点O到直线l的距离,对用均值不等式,则:当且仅当即,①,S取得最大值.此时,,,即,代入①式整理得,即点M的轨

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论