2025届山东省青岛五十八中数学高二上期末经典试题含解析_第1页
2025届山东省青岛五十八中数学高二上期末经典试题含解析_第2页
2025届山东省青岛五十八中数学高二上期末经典试题含解析_第3页
2025届山东省青岛五十八中数学高二上期末经典试题含解析_第4页
2025届山东省青岛五十八中数学高二上期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省青岛五十八中数学高二上期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2021年小林大学毕业后,9月1日开始工作,他决定给自己开一张储蓄银行卡,每月的10号存钱至该银行卡(假设当天存钱次日到账).2021年9月10日他给卡上存入1元,以后每月存的钱数比上个月多一倍,则他这张银行卡账上存钱总额(不含银行利息)首次达到1万元的时间为()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日2.已知函数,在上随机取一个实数,则使得成立的概率为()A. B.C. D.3.如图所示,过抛物线的焦点F的直线依次交抛物线及准线于点A,B,C.若,且,则抛物线的方程为()A. B.C. D.4.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.曲线上的点到直线的距离的最小值是()A.3 B.C.2 D.6.有下列四个命题,其中真命题是()A., B.,,C.,, D.,7.若函数,满足且,则()A.1 B.2C.3 D.48.在中,已知,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形9.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待18秒才出现绿灯的概率为()A B.C. D.10.接种疫苗是预防控制新冠疫情最有效的方法,我国自2021年1月9日起实施全民免费接种新冠疫苗并持续加快推进接种工作.某地为方便居民接种,共设置了A、B、C三个新冠疫苗接种点,每位接种者可去任一个接种点接种.若甲、乙两人去接种新冠疫苗,则两人不在同一接种点接种疫苗的概率为()A. B.C. D.11.已知,,若,则()A.9 B.6C.5 D.312.甲、乙、丙、丁四位同学一起去找老师询问成语竞赛的成绩.老师说:你们四人中有位优秀,位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙、丁可以知道自己的成绩 B.乙、丁可以知道对方的成绩C.乙可以知道四人的成绩 D.丁可以知道四人的成绩二、填空题:本题共4小题,每小题5分,共20分。13.如图,椭圆的左、右焦点分别为,过椭圆上的点作轴的垂线,垂足为,若四边形为菱形,则该椭圆的离心率为_________.14.设直线,直线,若,则_______.15.已知是椭圆的左、右焦点,在椭圆上运动,当的值最小时,的面积为_______16.下图是个几何体的展开图,图①是由个边长为的正三角形组成;图②是由四个边长为的正三角形和一个边长为的正方形组成;图③是由个边长为的正三角形组成;图④是由个边长为的正方形组成.若几何体能够穿过直径为的圆,则该几何体的展开图可以是______(填所有正确结论的序号).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦距为,左、右焦点分别为,为椭圆上一点,且轴,,为垂足,为坐标原点,且(1)求椭圆的标准方程;(2)过椭圆的右焦点的直线(斜率不为)与椭圆交于两点,为轴正半轴上一点,且,求点的坐标18.(12分)如图甲,平面图形中,,沿将折起,使点到点的位置,如图乙,使.(1)求证:平面平面;(2)若点满足,求点到直线的距离.19.(12分)已知函数(1)当时,求在区间上的最值;(2)若在定义域内有两个零点,求的取值范围20.(12分)已知直线l过点A(﹣3,1),且与直线4x﹣3y+t=0垂直(1)求直线l的一般式方程;(2)若直线l与圆C:x2+y2=m相交于点P,Q,且|PQ|=8,求圆C的方程21.(12分)平面直角坐标系xOy中,点,,点M满足.记M的轨迹为C.(1)说明C是什么曲线,并求C的方程;(2)已知经过的直线l与C交于A,B两点,若,求.22.(10分)在①,;②,;③,.这三个条件中任选一个,补充在下面问题中.问题:已知数列的前n项和为,,___________.(1)求数列的通项公式(2)已知,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析可得每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为,分析首次达到1万元的值,即得解【详解】依题意可知,小林从第一个月开始,每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为.因为为增函数,且,所以第14个月的10号存完钱后,他这张银行卡账上存钱总额首次达到1万元,即2022年10月11日他这张银行卡账上存钱总额首次达到1万元.故选:C2、B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.【详解】由,得,解得,在区间上随机取一实数,则实数满足不等式的概率为故选:B3、A【解析】分别过点作准线的垂线,分别交准线于点,,设,推出;根据,进而推导出,结合抛物线定义求出;最后由相似比推导出,即可求出抛物线的方程.【详解】如图分别过点作准线的垂线,分别交准线于点,,设与交于点.设,,,由抛物线定义得:,故在直角三角形中,,,,,,,∥,,,即,,所以抛物线的方程为.故选:A4、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.5、D【解析】求出函数的导函数,设切点为,依题意即过切点的切线恰好与直线平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【详解】解:因为,所以,设切点为,则,解得,所以切点为,点到直线的距离,所以曲线上的点到直线的距离的最小值是;故选:D6、B【解析】对于选项A,令即可验证其不正确;对于选项C、选项D,令,即可验证其均不正确,进而可得出结果.【详解】对于选项A,令,则,故A错;对于选项B,令,则,显然成立,故B正确;对于选项C,令,则显然无解,故C错;对于选项D,令,则显然不成立,故D错.故选B【点睛】本题主要考查命题真假的判定,用特殊值法验证即可,属于常考题型.7、C【解析】先取,得与之间的关系,然后根据导数的运算直接求导,代值可得.【详解】取,则有,即,又因为所以,所以,所以.故选:C8、B【解析】利用诱导公式、两角和的正弦公式化简已知条件,由此判断出三角形的形状.【详解】由,得,得,由于,所以,所以.故选:B9、B【解析】由几何概型公式求解即可.【详解】红灯持续时间为40秒,则至少需要等待18秒才出现绿灯的概率为,故选:B10、C【解析】利用古典概型的概率公式可求出结果【详解】由题知,基本事件总数为甲、乙两人不在同一接种点接种疫苗的基本事件数为由古典概型概率计算公式可得所求概率故选:11、D【解析】根据空间向量垂直的坐标表示即可求解.【详解】.故选:D.12、A【解析】分析可知乙、丙的成绩中必有位优秀、位良好,结合题意进行推导,可得出结论.【详解】由于个人中的成绩中有位优秀,位良好,甲知道乙、丙的成绩,还是不知道自己的成绩,则乙、丙的成绩必有位优秀、位良好,甲、丁的成绩中必有位优秀、位良好,因为给乙看丙的成绩,则乙必然知道自己的成绩,丁知道甲的成绩后,必然知道自己的成绩.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意可得,利用推出,进而得出结果.【详解】由题意知,,将代入方程中,得,因为,所以,整理,得,又,所以,由,解得.故答案为:14、##0.5【解析】根据两直线平行可得,,即可求出【详解】依题可得,,解得故答案为:15、【解析】根据椭圆定义得出,进而对进行化简,结合基本不等式得出的最小值,并求出的值,进而求出面积.【详解】由椭圆定义可知,,所以,,当且仅当,即时取“=”.又,所以.所以,由勾股定理可知:,所以.故答案为:.16、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与比较大小,即可确定答案.【详解】①由题设,几何体为棱长为的正四面体,该正四面体可放入一个正方体中,且正方体的棱长为,该正四面体的外接球半径为,满足要求;②由题设,几何体为棱长为的正四棱锥,如下图所示:设,连接,则为、的中点,因为四边形是边长为的正方形,则,所以,,所以,,所以,,,所以点为正四棱锥的外接球球心,且该球的半径为,不满足要求;③由题设,几何体为棱长为的正八面体,该正八面体可由两个共底面,且棱长均为的正四棱锥拼接而成,由②可知,该正八面体的外接球半径为,不满足要求;④由题设,几何体为棱长为的正方体,其外接球半径为,不满足要求;故答案为:①.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用△∽△构造齐次方程,求出离心率,再利用焦距即可求出椭圆方程;(2)将直线方程与椭圆方程联立利用韦达定理求出和,利用几何关系可知,即可得,将韦达定理代入化简即可求得点坐标.【小问1详解】∵椭圆的焦距为,∴,即,轴,∴,则,由,,则△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,则椭圆的标准方程为,【小问2详解】设直线的方程为,且,将直线方程与椭圆方程联立得,,则,,∵,∴,∴,∴,∴,即.18、(1)证明见解析(2)【解析】(1)利用给定条件可得平面,再证即可证得平面推理作答.(2)由(1)得EA,EB,EG两两垂直,建立空间直角坐标系,先求出向量在向量上的投影的长,然后由勾股定理可得答案.【小问1详解】因为,则,且,又,平面,因此,平面,即有平面,平面,则,而,则四边形为等腰梯形,又,则有,于是有,则,即,,平面,因此,平面,而平面,所以平面平面.【小问2详解】由(1)知,EA,EB,EG两两垂直,以点E为原点,射线EA,EB,EG分别为x,y,z轴非负半轴建立空间直角坐标系,如图,因,四边形是矩形,则,即,,,由,则则则向量在向量上的投影的长为又,所以点到直线的距离19、(1),;(2).【解析】(1)当时,求出导函数,求出函数得单调区间,即可求出在区间上的最值;(2)由,分离参数得,根据函数得单调性作图,结合图像即可得出答案.【详解】解:(1)当时,,,∴在单调递减,在单调递增,,,∴,(2),则,∴在单调递增,在单调递减,,当时,,当时,,作出函数和得图像,∴由图象可得,.20、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直关系得过直线l斜率,由点斜式化简即可求解l的一般式方程;(2)结合勾股定理建立弦心距(由点到直线距离公式求解),半弦长,圆半径的基本关系,解出,即可求解圆C的方程【小问1详解】因为直线l与直线4x﹣3y+t=0垂直,所以直线l的斜率为,故直线l的方程为,即3x+4y+5=0,因此直线l的一般式方程为3x+4y+5=0;【小问2详解】圆C:x2+y2=m的圆心为(0,0),半径为,圆心(0,0)到直线l的距离为,则半径满足m=42+12=17,即m=17,所以圆C:x2+y2=1721、(1)C是以点,为左右焦点的椭圆,(2)【解析】(1)根据椭圆的定义即可得到答案.(2)当垂直于轴时,,舍去.当不垂直于轴时,可设,再根据题意结合韦达定理求解即可.【小问1详解】因为,,所以C是以点,为左右焦点的椭圆.于是,,故,因此C的方程为.【小问2详解】当垂直于轴时,,,舍去.当不垂直于轴时,可设,代入可得.因为,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论