陕西省西北大学附中2025届高二数学第一学期期末检测模拟试题含解析_第1页
陕西省西北大学附中2025届高二数学第一学期期末检测模拟试题含解析_第2页
陕西省西北大学附中2025届高二数学第一学期期末检测模拟试题含解析_第3页
陕西省西北大学附中2025届高二数学第一学期期末检测模拟试题含解析_第4页
陕西省西北大学附中2025届高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西北大学附中2025届高二数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆的圆心坐标与半径分别是()A. B.C. D.2.已知正方形ABCD的边长为2,E,F分别为CD,CB的中点,分别沿AE,AF将三角形ADE,ABF折起,使得点B,D恰好重合,记为点P,则AC与平面PCE所成角等于()A. B.C. D.3.若命题“对任意,使得成立”是真命题,则实数a的取值范围是()A. B.C. D.4.设函数在上可导,则等于()A. B.C. D.以上都不对5.椭圆与双曲线有公共的焦点、,与在第一象限内交于点,是以线段为底边的等腰三角形,若椭圆的离心率的范围是,则双曲线的离心率取值范围是()A. B.C. D.6.若圆的半径为,则实数()A. B.-1C.1 D.7.过点A(3,3)且垂直于直线的直线方程为A. B.C. D.8.阅读如图所示程序框图,运行相应的程序,输出的S的值等于()A.2 B.6C.14 D.309.在数列中,,,则()A.985 B.1035C.2020 D.207010.如果,那么下列不等式成立的是()A. B.C. D.11.执行如图的程序框图,输出的S的值为()A. B.0C.1 D.212.在平行六面体中,,,,则()A. B.5C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知点,,点P在x轴上,且,则点P的坐标为______14.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折次,那么______.15.若方程表示的曲线是双曲线,则实数m的取值范围是___;该双曲线的焦距是___16.已知数列的前项和,则该数列的首项__________,通项公式__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥(是圆的直径).规划在公路上选两个点、,并修建两段直线型道路、.规划要求,线段、上的所有点到点的距离均不小于圆的半径.已知点到直线的距离分别为和(为垂足),测得,,(单位:百米).(1)若道路与桥垂直,求道路的长;(2)在规划要求下,点能否选在处?并说明理由.18.(12分)如图,在四棱锥中,面ABCD,,且,,,,,N为PD的中点.(1)求证:平面PBC;(2)在线段PD上是否存在一点M,使得直线CM与平面PBC所成角的正弦值是.若存在,求出的值,若不存在,说明理由.19.(12分)已知圆经过,且圆心C在直线上(1)求圆的标准方程;(2)若直线:与圆存在公共点,求实数的取值范围20.(12分)已知椭圆左右焦点分别为,,离心率为,P是椭圆上一点,且面积的最大值为1.(1)求椭圆的方程;(2)过的直线交椭圆于M,N两点,求的取值范围.21.(12分)如图,在正四棱柱中,是上的点,满足为等边三角形.(1)求证:平面;(2)求点到平面的距离.22.(10分)如图,在正方体中,,分别为棱,的中点(1)求证:直线平面;(2)求异面直线与所成角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】将圆的一般方程化为标准方程,即可得答案.【详解】由题可知,圆的标准方程为,所以圆心为,半径为3,故选.2、A【解析】如图,以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,利用空间向量求解【详解】由题意得,因为正方形ABCD的边长为2,E,F分别为CD,CB的中点,所以,所以,所以所以PA,PE,PF三线互相垂直,故以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,则,,,,设,则由,,,得,解得,则设平面的法向量为,则,令,则,因为,所以AC与平面PCE所成角的正弦值,因为AC与平面PCE所成角为锐角,所以AC与平面PCE所成角为,故选:A3、A【解析】由题得对任意恒成立,求出的最大值即可.【详解】解:由题得对任意恒成立,(当且仅当时等号成立)所以故选:A4、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C5、B【解析】求得,可得出,设椭圆和双曲线的离心率分别为、,可得,由可求得的取值范围.【详解】设,设双曲线的实轴长为,因为与在第一象限内交于点,是以线段为底边的等腰三角形,则,由椭圆的定义可得,由双曲线的定义可得,所以,,则,设椭圆和双曲线的离心率分别为、,则,即,因,则,故.故选:B.6、B【解析】将圆的方程化为标准方程,即可求出半径的表达式,从而可求出的值.【详解】由题意,圆的方程可化为,所以半径为,解得.故选:B.【点睛】本题考查圆的方程,考查学生的计算求解能力,属于基础题.7、D【解析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.8、C【解析】模拟运行程序,直到得出输出的S的值.【详解】运行程序框图,,,;,,;,,;,输出.故选:C9、A【解析】根据累加法得,,进而得.【详解】解:因为所以,当时,,,……,,所以,将以上式子相加得,所以,,.当时,,满足;所以,.所以.故选:A10、D【解析】利用不等式的性质分析判断每个选项.【详解】由不等式的性质可知,因为,所以,,故A错误,D正确;由,可得,,故B,C错误.故选:D11、A【解析】直接求出的值即可.【详解】解:由题得,程序框图就是求,由于三角函数的最小正周期为,,,所以.故选:A12、B【解析】由,则结合已知条件及模长公式即可求解.【详解】解:,所以,所以,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,由,可得,求解即可【详解】设,由故解得:则点P的坐标为故答案为:14、①.5②.【解析】(1)按对折列举即可;(2)根据规律可得,再根据错位相减法得结果.【详解】(1)由对折2次共可以得到,,三种规格的图形,所以对着三次的结果有:,共4种不同规格(单位;故对折4次可得到如下规格:,,,,,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为的等比数列,首项为120,第n次对折后的图形面积为,对于第n此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为种(证明从略),故得猜想,设,则,两式作差得:,因此,.故答案为:;.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;(3)对于结构,利用分组求和法;(4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.解答题15、①.②.2【解析】由题意可得,由此可解得m的范围,进一步将方程化为标准方程即可求得焦距【详解】由所表示的曲线是双曲线,可知,解得,当时,方程可变为:,此时双曲线焦距为,当时,m不存在,不合题意;故双曲线的焦距:故答案为:;16、①.;②..【解析】空一:利用代入法直接进行求解即可;空二:利用之间的关系进行求解即可.【详解】空一:;空二:当时,,显然不适合上式,所以,故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)15(百米)(2)点选在处不满足规划要求,理由见解析【解析】(1)建立适当的坐标系,得圆及直线的方程,进而得解.(2)不妨点选在处,求方程并求其与圆的交点,在线段上取点不符合条件,得结论.【小问1详解】如图,过作,垂足为.以为坐标原点,直线为轴,建立平面直角坐标系.因为为圆的直径,,所以圆的方程为.因为,,所以,故直线的方程为,则点,的纵坐标分别为3,从而,,直线的斜率为.因为,所以直线的斜率为,直线的方程为.令,得,,所以.因此道路的长为15(百米).【小问2详解】若点选在处,连结,可求出点,又,所以线段.由解得或,故不妨取,得到在线段上的点,因为,所以线段上存在点到点的距离小于圆的半径5.因此点选在处不满足规划要求.18、(1)证明见解析(2)存在,且【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)设,利用直线与平面所成角的正弦值列方程,化简求得.【小问1详解】设是的中点,连接,由于,所以四边形是矩形,所以,由于平面,所以,以为空间坐标原点建立如图所示空间直角坐标系,,,,设平面的法向量为,则,故可设.,且平面,所以平面.【小问2详解】,设,则,,,设直线与平面所成角为,则,,两边平方并化简得,解得或(舍去).所以存在,使直线与平面所成角的正弦值是,且.19、(1)(2)【解析】(1)因为圆心在直线上,可设圆心坐标为,利用圆心到圆上两点的距离相等列出等式求解即可.(2)直线与圆存在公共点,即圆心到直线的距离小于等于半径,列出不等关系求解即可.【小问1详解】解:因为圆心在直线上,所以设圆心坐标为,因为圆经过,,所以,即:,解方程得,圆心坐标为,半径为,圆的标准方程为:【小问2详解】圆心到直线的距离且直线与圆有公共点即20、(1)(2)【解析】(1)依题意得到方程组,求出、、,即可求出椭圆方程;(2)首先求出过且与轴垂直时、的坐标,即可得到,当过的直线不与轴垂直时,可设,,直线方程为,联立直线与椭圆方程,消元、列出韦达定理,根据平面向量数量积的坐标表示得到,将韦达定理代入得到,再根据函数的性质求出取值范围;【小问1详解】解:由题意可列方程组,解得,所以椭圆方程为:.【小问2详解】解:①当过的直线与轴垂直时,此时,,,则,.②当过的直线不与轴垂直时,可设,,直线方程为联立得:.所以,=将韦达定理代入上式得:.,,,由①②可知.21、(1)证明见解析;(2).【解析】(1)根据题意证明,,然后根据线面垂直的判定定理证明问题;(2)结合(1),进而利用等体积法求得答案.【小问1详解】由题意,,为等边三角形,,∵平面ABCD,∴,则,即为中点.连接,∵平面,平面,∴,易得,则,又,于是,即,同理,即,又平面.【小问2详解】设M到平面的距离为d,,∴.易得,取BD的中点N,连接,则,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论