北京市第四中学2025届高一上数学期末联考模拟试题含解析_第1页
北京市第四中学2025届高一上数学期末联考模拟试题含解析_第2页
北京市第四中学2025届高一上数学期末联考模拟试题含解析_第3页
北京市第四中学2025届高一上数学期末联考模拟试题含解析_第4页
北京市第四中学2025届高一上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市第四中学2025届高一上数学期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是第三象限角,且,则()A. B.C. D.2.根据表格中的数据可以判定方程的一个根所在的区间为()1234500.6931.0991.3861.60910123A. B.C. D.3.函数,的图象大致是()A. B.C. D.4.集合,,将集合A,B分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A. B.C. D.5.奇函数在内单调递减且,则不等式的解集为()A. B.C. D.6.已知函数是定义在上的奇函数,在区间上单调递增.若实数满足,则实数的取值范围是A B.C. D.7.函数f(x)=lnx﹣1的零点所在的区间是A(1,2) B.(2,3)C.(3,4) D.(4,5)8.已知,则A. B.C. D.9.定义运算:,则函数的图像是()A. B.C. D.10.在去年的足球联赛上,一队每场比赛平均失球个数是1.5,全年比赛失球个数的标准差是1.1;二队每场比赛平均失球个数是2.1,全年比赛失球个数的标准差是0.4.则下列说法错误的是()A.平均来说一队比二队防守技术好 B.二队很少失球C.一队有时表现差,有时表现又非常好 D.二队比一队技术水平更不稳定二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若有解,则m的取值范围是______12.设角的顶点与坐标原点重合,始变与轴的非负半轴重合,若角的终边上一点的坐标为,则的值为__________13.若,则____________.14.已知,且,则的最小值为____________.15.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________16.如果实数满足条件,那么的最大值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设两个非零向量与不共线,(1)若,,,求证:A,B,D三点共线;(2)试确定实数k,使和共线18.已知函数.(1)在平面直角坐标系中画出函数的图象;(不用列表,直接画出草图.(2)根据图象,直接写出函数的单调区间;(3)若关于的方程有四个解,求的取值范围19.求满足下列条件的圆的方程:(1)经过点,,圆心在轴上;(2)经过直线与的交点,圆心为点.20.假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间.问:离家前不能看到报纸(称事件)的概率是多少?(须有过程)21.如图,正方体的棱长为,连接,,,,,,得到一个三棱锥.求:(1)三棱锥的表面积;(2)三棱锥的体积

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由是第三象限角可判断,利用平方关系即可求解.【详解】解:因为是第三象限角,且,所以,故选:A.2、C【解析】令,由表中数据结合零点存在性定理即可得解.【详解】令,由表格数据可得.由零点存在性定理可知,在区间内必有零点.故选C.【点睛】本题主要考查了零点存在性定理,属于基础题.3、A【解析】判断函数的奇偶性和对称性,以及函数在上的符号,利用排除法进行判断即可【详解】解:函数,则函数是奇函数,排除D,当时,,则,排除B,C,故选:A【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性以及函数值的对应性,结合排除法是解决本题的关键.难度不大4、B【解析】首先求出集合,再结合韦恩图及交集、并集、补集的定义计算可得;【详解】解:∵,,∴,则,,选项A中阴影部分表示的集合为,即,故A错误;选项B中阴影部分表示的集合由属于A但不属于B的元素构成,即,故B正确;选项C中阴影部分表示的集合由属于B但不属于A的元素构成,即,有1个元素,故C错误;选项D中阴影部分表示的集合由属于但不属于的元素构成,即,故D错误故选:B5、A【解析】由已知可作出函数的大致图象,结合图象可得到答案.【详解】因为函数在上单调递减,,所以当时,,当,,又因为是奇函数,图象关于原点对称,所以在上单调递减,,所以当时,,当时,,大致图象如下,由得或,解得,或,或,故选:A.【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出的大致图象,考查了学生分析问题、解决问题的能力.6、C【解析】是定义在上的奇函数,在上单调递增,解得故选7、B【解析】∵,在递增,而,∴函数的零点所在的区间是,故选B.8、B【解析】,因为函数是增函数,且,所以,故选B考点:对数的运算及对数函数的性质9、A【解析】先求解析式,再判断即可详解】由题意故选:A【点睛】本题考查函数图像的识别,考查指数函数性质,是基础题10、B【解析】利用平均数和标准差的定义及意义即可求解.【详解】对于A,因为一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,所以平均说来一队比二队防守技术好,故A正确;对于B,因为二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,所以二队经常失球,故B错误;对于C,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,所以一队有时表现很差,有时表现又非常好,故C正确;对于D,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,所以二队比一队技术水平更稳定,故D正确;故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用函数的值域,转化方程的实数解,列出不等式求解即可.【详解】函数,若有解,就是关于的方程在上有解;可得:或,解得:或可得.故答案为.【点睛】本题考查函数与方程的应用,考查转化思想有解计算能力.12、【解析】13、##0.6【解析】,根据三角函数诱导公式即可求解.【详解】=.故答案为:.14、##2.5【解析】将变形为,利用基本不等式求得答案.【详解】由题意得:,当且仅当时取得等号,故答案为:15、55【解析】用减去销量为的概率,求得日销售量不低于50件的概率.【详解】用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55.故答案为:【点睛】本小题主要考查根据频率分布直方图计算事件概率,属于基础题.16、1【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可【详解】先根据约束条件画出可行域,当直线过点时,z最大是1,故答案为1【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)转化为证明向量,共线,即可证明三点共线;(2)由共线定理可知,存在实数λ,使,利用向量相等,即可求解值.【详解】(1)证明:,,,,共线,又∵它们有公共点B,∴A,B,D三点共线(2)和共线,∴存在实数λ,使,即,.,是两个不共线的非零向量,,.18、(1)作图见解析;(2)增区间为和;减区间为和;(3).【解析】(1)化简函数的解析式为分段函数,结合二次函数的图象与性质,即可画出函数的图象;(2)由(1)中的图象,直接写出函数的单调区间;(3)把方程有四个解等价于函数与的图象有四个交点,利用函数的图象,即可求解.【详解】(1)由题意,函数,所以的图象如右图所示:(2)由(1)中的函数图象,可得函数的单调增区间为和,单调减区间为和.(3)由方程有四个解等价于函数与的图象有四个交点,又由函数的最小值为,结合图象可得,即实数的取值范围19、(1)(2)【解析】(1)设出圆的方程,代入A、B两点坐标,求出圆心和半径,从而求出圆的方程;(2)先求出交点坐标,进而求出半径,写出圆的方程.【小问1详解】设圆的方程为,由题意得:,解得:,所以圆的方程为;【小问2详解】联立与,解得:,所以交点为,则圆的半径为,所以圆的方程为.20、.【解析】设送报人到达的时间为X,小王离家去工作的时间为Y,(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|6≤X≤8,7≤Y≤9}一个正方形区域,求出其面积,事件A表示小王离家前不能看到报纸,所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}

求出其面积,根据几何概型的概率公式解之即可;试题解析:如图,设送报人到达的时间为,小王离家去工作的时间为.(,)可以看成平面中的点,试验的全部结果所构成的区域为一个正方形区域,面积为,事件表示小王离家前不能看到报纸,所构成的区域为即图中的阴影部分,面积为.这是一个几何概型,所以.答:小王离家前不能看到报纸的概率是0.125.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论