安徽名校2025届数学高二上期末复习检测试题含解析_第1页
安徽名校2025届数学高二上期末复习检测试题含解析_第2页
安徽名校2025届数学高二上期末复习检测试题含解析_第3页
安徽名校2025届数学高二上期末复习检测试题含解析_第4页
安徽名校2025届数学高二上期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽名校2025届数学高二上期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四棱锥中,底面ABCD是正方形,E为PD中点,若,,,则()A. B.C. D.2.某公司有1000名员工,其中:高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工为800名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽取100名员工,应当抽取的一般员工人数为()A.100 B.15C.80 D.503.已知等比数列{an}中,,,则()A. B.1C. D.44.已知是抛物线的焦点,为抛物线上的动点,且的坐标为,则的最小值是A. B.C. D.5.若,,则有()A. B.C. D.6.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,且则的实轴长为A.1 B.2C.4 D.87.已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A. B.C. D.8.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则的表达式为()A. B.C. D.9.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于A.2 B.3C.6 D.910.已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0 B.1C.2 D.311.命题“∃x0∈(0,+∞),”的否定是()A.∀x∈(﹣∞,0),2x+sinx≥0B.∀x∈(0,+∞),2x+sinx≥0C.∃x0∈(0,+∞),D.∃x0∈(﹣∞,0),12.设是虚数单位,则复数对应的点在平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.若平面法向量,直线的方向向量为,则与所成角的大小为___________.14.等比数列的前项和为,则的值为_____15.已知,,若,则_________.16.在空间四边形ABCD中,AD=2,BC=2,E,F分别是AB,CD的中点,EF=,则异面直线AD与BC所成角的大小为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系内,已知的三个顶点坐标分别为(1)求边垂直平分线所在的直线的方程;(2)若的面积为5,求点的坐标18.(12分)如图1所示,在四边形ABCD中,,,,将△沿BD折起,使得直线AB与平面BCD所成的角为45°,连接AC,得到如图2所示的三棱锥(1)证明:平面ABD平面BCD;(2)若三棱锥中,二面角的大小为60°,求三棱锥的体积19.(12分)已知圆:,直线:.圆与圆关于直线对称(1)求圆的方程;(2)点是圆上的动点,过点作圆的切线,切点分别为、.求四边形面积的取值范围20.(12分)已知双曲线及直线(1)若与有两个不同的交点,求实数的取值范围(2)若与交于,两点,且线段中点的横坐标为,求线段的长21.(12分)某企业计划新购买台设备,并将购买的设备分配给名年龄不同(视为技术水平不同)的技工加工一批模具,因技术水平不同而加工出的产品数量不同,故产生的经济效益也不同.若用变量表示不同技工的年龄,变量为相应的效益值(元),根据以往统计经验,他们的工作效益满足最小二乘法,且关于的线性回归方程为(1)试预测一名年龄为岁的技工使用该设备所产生的经济效益;(2)试根据的值判断使用该批设备的技工人员所产生的的效益与技工年龄的相关性强弱(,则认为与线性相关性很强;,则认为与线性相关性不强);(3)若这批设备有两道独立运行的生产工序,且两道工序出现故障的概率依次是,.若两道工序都没有出现故障,则生产成本不增加;若工序出现故障,则生产成本增加万元;若工序出现故障,则生产成本增加万元;若两道工序都出现故障,则生产成本增加万元.求这批设备增加的生产成本的期望参考数据:,参考公式:回归直线的斜率和截距的最小二乘估计分别为,,.22.(10分)已知椭圆,离心率为,短半轴长为1(1)求椭圆C的方程;(2)已知直线,问:在椭圆C上是否存在点T,使得点T到直线l的距离最大?若存在,请求出这个最大距离;若不存在,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据向量线性运算法则计算即可.【详解】故选:C2、C【解析】按照比例关系,分层抽取.【详解】由题意可知,所以应当抽取的一般员工人数为.故选:C3、D【解析】设公比为,然后由已知条件结合等比数列的通项公式列方程求出,从而可求出,【详解】设公比为,因为等比数列{an}中,,,所以,所以,解得,所以,得故选:D4、C【解析】由题意可得,抛物线的焦点,准线方程为过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角∴当最小时,最小,则当和抛物线相切时,最小设切点,由的导数为,则的斜率为.∴,则.∴,∴故选C点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化,这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.5、D【解析】对待比较的代数式进行作差,利用不等式基本性质,即可判断大小.【详解】因为,又,,故,则,即;因为,又,,故,则;综上所述:.故选:D.6、B【解析】设等轴双曲线的方程为抛物线,抛物线准线方程为设等轴双曲线与抛物线的准线的两个交点,,则,将,代入,得等轴双曲线的方程为的实轴长为故选7、A【解析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.8、D【解析】先分别观察给出正方体的个数为:1,,,,总结一般性的规律,将一般性的数列转化为特殊的数列再求解【详解】解:根据前面四个发现规律:,,,,,累加得:,,故选:【点睛】本题主要考查了归纳推理,属于中档题9、D【解析】求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因为在x=1处有极值∴a+b=6∵a>0,b>0∴当且仅当a=b=3时取等号所以ab的最大值等于9故选D点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等10、C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C11、B【解析】利用特称命题的否定是全称命题,写出结果即可【详解】命题“∃x0∈(0,+∞),”的否定是“∀x∈(0,+∞),2x+sinx≥0”故选:B12、A【解析】计算出复数即可得出结果.【详解】由于,对应的点的坐标为,在第一象限,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】设直线与平面所成角为,则,直接利用直线与平面所成的角的向量计算公式,即可求出直线与平面所成的角【详解】解:已知直线的方向向量为,平面的法向量为,设直线与平面所成角为,则,,,所以直线与平面所成角为.故答案为:.14、【解析】根据等比数列前项和公式的特点列方程,解方程求得的值.【详解】由于等比数列前项和,本题中,故.故填:.【点睛】本小题主要考查等比数列前项和公式的特点,考查观察与思考的能力,属于基础题.15、【解析】由题意,,利用向量数量积的坐标运算可得,然后利用定积分性质可得,原式,最后利用微积分基本定理计算,,利用定积分的几何意义计算,即可得答案.【详解】解:因为,,且,所以,解得,所以====.故答案为:.16、【解析】由已知找到异面直线所成角的平面角,再运用余弦定理可得答案.【详解】解:设BD的中点为O,连接EO,FO,所以,则∠EOF(或其补角)就是异面直线AD,BC所成的角的平面角,又因为EO=AD=1,FO=BC=,EF=.根据余弦定理得=-,所以∠EOF=150°,异面直线AD与BC所成角的大小为30°.故答案为:30°.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)由题意直线的斜率公式,两直线垂直的性质,求出的斜率,再用点斜式求直线的方程(2)根据的面积为5,求得点到直线的距离,再利用点到直线的距离公式,求得的值【详解】解:(1),,的中点的坐标为,又设边的垂直平分线所在的直线的斜率为则,可得的方程为,即边的垂直平分线所在的直线的方程(2)边所在的直线方程为设边上的高为即点到直线的距离为且解得解得或,点的坐标为或18、(1)证明见解析;(2).【解析】(1)过作面,连接,结合题设易知,根据过面外一点在该面上垂线性质知重合,再应用面面垂直的判定证明结论.(2)面中过作,结合题设构建空间直角坐标系,设并确定相关点坐标,求面、面法向量,应用空间向量夹角的坐标表示列方程求参数,最后由棱锥体积公式求体积.【小问1详解】由题设,易知:△是等腰直角三角形,即,将△沿BD折起过程中使直线AB与平面BCD所成的角为45°,此时过作面,连接,如下图示,所以,在△中,又且面,因为过平面外一点有且只有一条垂线段,故重合,此时面,又面,故平面ABD平面BCD;【小问2详解】在平面中过作,由(1)结论可构建如下图示的空间直角坐标系,由,,,若,则,故,,,若是面的一个法向量,则,若,则,若是面的一个法向量,则,若,则,所以,由二面角的大小为60°有,解得,故19、(1)(2)【解析】(1)圆关于直线对称,半径不变,只需求出圆心对称的坐标即可.(2)将四边形面积分成两个全等的直角三角形,利用直角三角形的性质,一条直角边不变时,斜边与另外一条直角边的大小成正相关,从而得到面积的最小值与最大值.【小问1详解】由题可知的圆心为,圆的半径与之相同,圆心与之关于对称,设的圆心为,故可根据中点在对称的直线上得到①,根据斜率相乘为-1得到②,联立①②可得,所以圆心坐标为,且半径为,故的方程为【小问2详解】连接,将四边形分割成两个全等的直角三角形,所以有,四边形面积的范围可转化为MP长度的范围,在中,根据勾股定理可知,因为半径长度不变,所以最大时最大;所以最小时最小;画出如下图,当动点P移动至在时面积最小,时面积最大;设点P的坐标为,所以有,解得,所以,,所以,所以;,所以.所以20、(1)且;(2)【解析】(1)联立直线与双曲线方程,利用方程组与两个交点,求出k的范围(2)设交点A(x1,y1),B(x2,y2),利用韦达定理以及弦长公式求解即可【详解】(1)联立y=2可得∵与有两个不同的交点,且,且(2)设,由(1)可知,又中点的横坐标为,,或又由(1)可知,为与有两个不同交点时,21、(1)元;(2)使用该批设备的技工人员所产生的的效益与技工年龄的相关性强;(3)0.13万元.【解析】(1)直接把代入线性回归方程即得解;(2)先求出,再代公式求出相关系数比较即得解;(3)设增加的生产成本为ξ(万元),则ξ的可能取值为0,2,3,5,求出对应的概率即得解.小问1详解】解:当时,.所以预测一名年龄为岁的技工使用该设备所产生的经济效益为元.【小问2详解】解:由题得,所以,所以.因为,所以与线性相关性很强.所以使用该批设备的技工人员所产生的的效益与技工年龄的相关性强.【小问3详解】解:设增加的生产成本为ξ(万元),则ξ的可能取值为0,2,3,5P(ξ=0)=(1﹣0.02)×(1﹣0.03)=0.9506,P(ξ=2)=0.02×(1﹣0.03)=0.0194,P(ξ=3)=(1﹣0.02)×0.03=0.0294,P(ξ=5)=0.02×0.03=0.0006所以Eξ=0×0.9506+2×0.0194+3×0.0294+5×0.0006=0.13(万元),所以这批设备增加的生产成本的期望为0.13万元.22、(1);(2)存在,最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论