




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省罗山高中老校区2025届高三(最后冲刺)数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.02.复数的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,则的周长的取值范围是()A. B. C. D.4.在中,,,,若,则实数()A. B. C. D.5.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.46.若x,y满足约束条件的取值范围是A.[0,6] B.[0,4] C.[6, D.[4,7.命题:的否定为A. B.C. D.8.已知复数z=2i1-i,则A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知,是两条不重合的直线,,是两个不重合的平面,则下列命题中错误的是()A.若,,则或B.若,,,则C.若,,,则D.若,,则10.设i为数单位,为z的共轭复数,若,则()A. B. C. D.11.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是()A. B. C. D.12.复数的实部与虚部相等,其中为虚部单位,则实数()A.3 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校高二(4)班统计全班同学中午在食堂用餐时间,有7人用时为6分钟,有14人用时7分钟,有15人用时为8分钟,还有4人用时为10分钟,则高二(4)班全体同学用餐平均用时为____分钟.14.某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为______.时,可使得所用材料最省.15.我国古代数学著作《九章算术》中记载“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”设人数、物价分别为、,满足,则_____,_____.16.“六艺”源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“礼”与“乐”必须排在前两节,“射”和“御”两讲座必须相邻的不同安排种数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立关于的回归方程;(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,18.(12分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.19.(12分)如图所示,直角梯形中,,,,四边形为矩形,.(1)求证:平面平面;(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.20.(12分)设等比数列的前项和为,若(Ⅰ)求数列的通项公式;(Ⅱ)在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.21.(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为4sin.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.22.(10分)如图,已知四棱锥,底面为边长为2的菱形,平面,,是的中点,.(Ⅰ)证明:;(Ⅱ)若为上的动点,求与平面所成最大角的正切值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.2、A【解析】
试题分析:由题意可得:.共轭复数为,故选A.考点:1.复数的除法运算;2.以及复平面上的点与复数的关系3、B【解析】
根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.【详解】抛物线,则焦点,准线方程为,根据抛物线定义可得,圆,圆心为,半径为,点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,则的周长为,所以,故选:B.【点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.4、D【解析】
将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,,所以,.故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.5、B【解析】
因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【详解】请在此输入详解!6、D【解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.7、C【解析】
命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C.8、C【解析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案.详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C.点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力.9、D【解析】
根据线面平行和面面平行的性质,可判定A;由线面平行的判定定理,可判断B;C中可判断,所成的二面角为;D中有可能,即得解.【详解】选项A:若,,根据线面平行和面面平行的性质,有或,故A正确;选项B:若,,,由线面平行的判定定理,有,故B正确;选项C:若,,,故,所成的二面角为,则,故C正确;选项D,若,,有可能,故D不正确.故选:D【点睛】本题考查了空间中的平行垂直关系判断,考查了学生逻辑推理,空间想象能力,属于中档题.10、A【解析】
由复数的除法求出,然后计算.【详解】,∴.故选:A.【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.11、C【解析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选.12、B【解析】
利用乘法运算化简复数即可得到答案.【详解】由已知,,所以,解得.故选:B【点睛】本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、7.5【解析】
分别求出所有人用时总和再除以总人数即可得到平均数.【详解】故答案为:7.5【点睛】此题考查求平均数,关键在于准确计算出所有数据之和,易错点在于概念辨析不清导致计算出错.14、【解析】
设圆柱的高为,底面半径为,根据容积为个立方单位可得,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值.【详解】设圆柱的高为,底面半径为.∵该圆柱形的如罐的容积为个立方单位∴,即.∴该圆柱形的表面积为.令,则.令,得;令,得.∴在上单调递减,在上单调递增.∴当时,取得最小值,即材料最省,此时.故答案为:.【点睛】本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题.15、【解析】
利用已知条件,通过求解方程组即可得到结果.【详解】设人数、物价分别为、,满足,解得,.故答案为:;.【点睛】本题考查函数与方程的应用,方程组的求解,考查计算能力,属于基础题.16、【解析】
分步排课,首先将“礼”与“乐”排在前两节,然后,“射”和“御”捆绑一一起作为一个元素与其它两个元素合起来全排列,同时它们内部也全排列.【详解】第一步:先将“礼”与“乐”排在前两节,有种不同的排法;第二步:将“射”和“御”两节讲座捆绑再和其他两艺全排有种不同的排法,所以满足“礼”与“乐”必须排在前两节,“射”和“御”两节讲座必须相邻的不同安排种数为.故答案为:1.【点睛】本题考查排列的应用,排列组合问题中,遵循特殊元素特殊位置优先考虑的原则,相邻问题用捆绑法,不相邻问题用插入法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)选取更合适;(2);(3)时,煤气用量最小.【解析】
(1)根据散点图的特点,可得更适合;(2)先建立关于的回归方程,再得出关于的回归方程;(3)写出函数关系,利用基本不等式得出最小值及其成立的条件.【详解】(1)选取更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型;(2)由公式可得:,,所以所求回归直线方程为:;(3)根据题意,设,则煤气用量,当且仅当时,等号成立,即时,煤气用量最小.【点睛】此题考查根据题意求回归方程,利用线性回归方程的求法得解,结合基本不等式求最值.18、(1)证明见详解;(2)证明见详解【解析】
(1)由是等比数列,由等比数列的性质可得:即可证明.(2)既是“数列”又是“数列”,可得,,则对于任意都成立,则成等比数列,设公比为,验证得答案.【详解】(1)证明:由是等比数列,由等比数列的性质可得:等比数列是“数列”.(2)证明:既是“数列”又是“数列”,可得,()(),()可得:对于任意都成立,即成等比数列,即成等比数列,成等比数列,成等比数列,设,()数列是“数列”时,由()可得:时,由()可得:,可得,同理可证成等比数列,数列是等比数列【点睛】本题是一道数列的新定义题目,考查了等比数列的性质、通项公式等基本知识,考查代数推理、转化与化归以及综合运用数学知识探究与解决问题的能力,属于难题.19、(1)见解析;(2)存在,长【解析】
(1)先证面,又因为面,所以平面平面.(2)根据题意建立空间直角坐标系.列出各点的坐标表示,设,则可得出向量,求出平面的法向量为,利用直线与平面所成角的正弦公式列方程求出或,从而求出线段的长.【详解】解:(1)证明:因为四边形为矩形,∴.∵∴∴∴面∴面又∵面∴平面平面(2)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系.如图所示:则,,,,,设,;∴,,设平面的法向量为,∴,不防设.∴,化简得,解得或;当时,,∴;当时,,∴;综上存在这样的点,线段的长.【点睛】本题考查平面与平面垂直的判定定理的应用,考查利用线面所成角求参数问题,是几何综合题,考查空间想象力以及计算能力.20、(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ),,两式相减化简整理利用等比数列的通项公式即可得出.(Ⅱ)由题设可得,可得,利用错位相减法即可得出.【详解】解:(Ⅰ)因为,故,两式相减可得,,故,因为是等比数列,∴,又,所以,故,所以;(Ⅱ)由题设可得,所以,所以,①则,②①-②得:,所以,得证.【点睛】本题考查了数列递推关系、等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.21、(1)(2)(2,).【解析】
(1)利用极坐标和直角坐标的转化公式求解.(2)先把两个方程均化为普通方程,求解公共点的直角坐标,然后化为极坐标即可.【详解】(1)∵曲线C的极坐标方程为,∴,则,即.(2),∴,联立可得,(舍)或,公共点(,3),化为极坐标(2,).【点睛】本题主要考查极坐标和直角坐标的转化及交点的求解,熟记极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏扬州人才集团下属企业招聘6人笔试备考试题及完整答案详解1套
- 2025江苏扬州中国大运河博物馆招聘4人笔试备考题库参考答案详解
- 2025年鄂尔多斯市公务员考试行测试卷历年真题及答案详解(名师系列)
- 2025年人教部编版语文四年级下册第三次月考测试题附答案(共4套)
- 河南省2024-2025学年高一下学期4月联考数学试题(含解析)
- 湖北省随州市部分高中2024-2025学年高二下学期3月月考物理试题(解析版)
- 陕西省安康市2024-2025学年高二下学期期中联考数学试卷(解析版)
- 如何进行房地产项目的价值评估
- 护理工作中的沟通技巧
- 元旦奇遇记幼儿故事时间
- T-GSEE 14-2024 额定电压6kV( Um=7.2kV)到35kV( Um=40.5kV)交联聚乙烯绝缘电力电缆熔接头
- 气管插管术的配合与护理课件
- RPA技术在国有企业数智化转型中的应用研究
- 腰池腹腔分流
- 宁夏水利建筑工程预算定额
- 2025年广东广州市越秀区建设街招聘劳动保障监察协管员1人历年高频重点提升(共500题)附带答案详解
- 《电梯安全法规解读》课件
- 2025年重庆环卫集团有限公司招聘笔试参考题库含答案解析
- 少年志不渝奋斗正当时
- 2023年-2024年生产经营单位安全教育培训试题加下载答案可打印
- 环保行业绿色产业项目投资计划书
评论
0/150
提交评论