铜陵市重点中学2025届高三3月份模拟考试数学试题含解析_第1页
铜陵市重点中学2025届高三3月份模拟考试数学试题含解析_第2页
铜陵市重点中学2025届高三3月份模拟考试数学试题含解析_第3页
铜陵市重点中学2025届高三3月份模拟考试数学试题含解析_第4页
铜陵市重点中学2025届高三3月份模拟考试数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

铜陵市重点中学2025届高三3月份模拟考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图若输入,则输出的的值为()A. B. C. D.2.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是()A.甲 B.乙 C.丙 D.丁3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. B. C. D.4.若等差数列的前项和为,且,,则的值为().A.21 B.63 C.13 D.845.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有()A.24 B.36 C.48 D.646.已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是()A. B. C. D.7.已知公差不为0的等差数列的前项的和为,,且成等比数列,则()A.56 B.72 C.88 D.408.《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体平均水平优于甲9.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A. B. C. D.10.已知数列对任意的有成立,若,则等于()A. B. C. D.11.已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度12.已知函数,则不等式的解集为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左、右焦点分别为、,过椭圆的右焦点作一条直线交椭圆于点、.则内切圆面积的最大值是_________.14.在中,,点是边的中点,则__________,________.15.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.16.已知,为虚数单位,且,则=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数()的最小值为.(1)求的值;(2)若,,为正实数,且,证明:.18.(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之间没有影响.(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望.19.(12分)已知抛物线E:y2=2px(p>0),焦点F到准线的距离为3,抛物线E上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.线段AB的垂直平分线与x轴交于点C.(1)求抛物线E的方程;(2)求△ABC面积的最大值.20.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.(Ⅰ)求证:平面平面;(ⅠⅠ)求直线与平面所成的角的正弦值.21.(12分)已知函数.(1)当时,求的单调区间.(2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程.(3)已知分别在,处取得极值,求证:.22.(10分)已知函数,函数().(1)讨论的单调性;(2)证明:当时,.(3)证明:当时,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

由程序语言依次计算,直到时输出即可【详解】程序的运行过程为当n=2时,时,,此时输出.故选:C【点睛】本题考查由程序框图计算输出结果,属于基础题2、C【解析】

分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;②假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.3、A【解析】

详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。4、B【解析】

由已知结合等差数列的通项公式及求和公式可求,,然后结合等差数列的求和公式即可求解.【详解】解:因为,,所以,解可得,,,则.故选:B.【点睛】本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题.5、B【解析】

根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.6、D【解析】

根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利用过某一点曲线切线斜率的求解方法可求得和,进而得到结果.【详解】关于直线对称的直线方程为:原题等价于与有且仅有四个不同的交点由可知,直线恒过点当时,在上单调递减;在上单调递增由此可得图象如下图所示:其中、为过点的曲线的两条切线,切点分别为由图象可知,当时,与有且仅有四个不同的交点设,,则,解得:设,,则,解得:,则本题正确选项:【点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.7、B【解析】

,将代入,求得公差d,再利用等差数列的前n项和公式计算即可.【详解】由已知,,,故,解得或(舍),故,.故选:B.【点睛】本题考查等差数列的前n项和公式,考查等差数列基本量的计算,是一道容易题.8、D【解析】

根据雷达图对选项逐一分析,由此确定叙述正确的选项.【详解】对于A选项,甲的数据分析分,乙的数据分析分,甲低于乙,故A选项错误.对于B选项,甲的建模素养分,乙的建模素养分,甲低于乙,故B选项错误.对于C选项,乙的六大素养中,逻辑推理分,不是最差,故C选项错误.对于D选项,甲的总得分分,乙的总得分分,所以乙的六大素养整体平均水平优于甲,故D选项正确.故选:D【点睛】本小题主要考查图表分析和数据处理,属于基础题.9、A【解析】

根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【详解】当为奇数时,,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.10、B【解析】

观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.11、C【解析】

依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;【详解】解:由已知得,是的一条对称轴,且使取得最值,则,,,,故选:C.【点睛】本题考查三角函数的性质以及三角函数的变换规则,属于基础题.12、D【解析】

先判断函数的奇偶性和单调性,得到,且,解不等式得解.【详解】由题得函数的定义域为.因为,所以为上的偶函数,因为函数都是在上单调递减.所以函数在上单调递减.因为,所以,且,解得.故选:D【点睛】本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】令直线:,与椭圆方程联立消去得,可设,则,.可知,又,故.三角形周长与三角形内切圆的半径的积是三角形面积的二倍,则内切圆半径,其面积最大值为.故本题应填.点睛:圆锥曲线中最值与范围的求法有两种:(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再求这个函数的最值,求函数最值的常用方法有配方法,判别式法,重要不等式及函数的单调性法等.14、2【解析】

根据正弦定理直接求出,利用三角形的边表示向量,然后利用向量的数量积求解即可.【详解】中,,,可得因为点是边的中点,所以故答案为:;.【点睛】本题主要考查了三角形的解法,向量的数量积的应用,考查计算能力,属于中档题.15、.【解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.16、4【解析】

解:利用复数相等,可知由有.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1)分类讨论,去绝对值求出函数的解析式,根据一次函数的性质,得出的单调性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化简后利用基本不等式求出的最小值,即可证出.【详解】(1)解:当时,单调递减;当时,单调递增.所以当时,取最小值.(2)证明:由(1)可知.要证明:,即证,因为,,为正实数,所以.当且仅当,即,,时取等号,所以.【点睛】本题考查绝对值不等式和基本不等式的应用,还运用“乘1法”和分类讨论思想,属于中档题.18、(1)(2)分布列见解析,期望为20【解析】

利用相互独立事件概率公式求解即可;由题意知,随机变量可能的取值为0,10,20,30,分别求出对应的概率,列出分布列并代入数学期望公式求解即可.【详解】(1)由相互独立事件概率公式可得,(2)由题意知,随机变量可能的取值为0,10,20,30.,,,,所以,的概率分布列为0102030所以数学期望.【点睛】本题考查相互独立事件概率公式和离散型随机变量的分布列及其数学期望;考查运算求解能力;确定随机变量可能的取值,求出对应的概率是求解本题的关键;属于中档题、常考题型.19、(1)y2=6x(2).【解析】

(1)根据抛物线定义,写出焦点坐标和准线方程,列方程即可得解;(2)根据中点坐标表示出|AB|和点到直线的距离,得出面积,利用均值不等式求解最大值.【详解】(1)抛物线E:y2=2px(p>0),焦点F(,0)到准线x的距离为3,可得p=3,即有抛物线方程为y2=6x;(2)设线段AB的中点为M(x0,y0),则,y0,kAB,则线段AB的垂直平分线方程为y﹣y0(x﹣2),①可得x=5,y=0是①的一个解,所以AB的垂直平分线与x轴的交点C为定点,且点C(5,0),由①可得直线AB的方程为y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由题意y1,y2是方程③的两个实根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到线段AB的距离h=|CM|,所以S△ABC|AB|h•,当且仅当9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)时等号成立,所以S△ABC的最大值为.【点睛】此题考查根据焦点和准线关系求抛物线方程,根据直线与抛物线位置关系求解三角形面积的最值,表示三角形的面积关系常涉及韦达定理整体代入,抛物线中需要考虑设点坐标的技巧,处理最值问题常用函数单调性求解或均值不等式求最值.20、(Ⅰ)详见解析;(Ⅱ).【解析】试题分析:(Ⅰ)连接交于,得,所以面,又,得面,即可利用面面平行的判定定理,证得结论;(Ⅱ)如图,以O为坐标原点,建立空间直角坐标系,求的平面的一个法向量,利用向量和向量夹角公式,即可求解与平面所成角的正弦值.试题解析:(Ⅰ)连接BD交AC于O,易知O是BD的中点,故OG//BE,BE面BEF,OG在面BEF外,所以OG//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC与OG相交于点O,面ACG有两条相交直线与面BEF平行,故面ACG∥面BEF;(Ⅱ)如图,以O为坐标原点,分别以OC、OD、OF为x、y、z轴建立空间直角坐标系,则,,,,,,,设面ABF的法向量为,依题意有,,令,,,,,直线AD与面ABF成的角的正弦值是.21、(1)单调递增区间为,;单调递减区间为;(2),;(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论