版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省深圳市四校发展联盟体高考压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3 B.6 C.9 D.122.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有()A.12种 B.24种 C.36种 D.72种3.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,,,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为()A. B. C. D.4.已知复数,,则()A. B. C. D.5.已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为()A. B. C. D.6.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)7.已知P是双曲线渐近线上一点,,是双曲线的左、右焦点,,记,PO,的斜率为,k,,若,-2k,成等差数列,则此双曲线的离心率为()A. B. C. D.8.已知函数,且关于的方程有且只有一个实数根,则实数的取值范围().A. B. C. D.9.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是()A. B. C. D.10.设集合,则()A. B.C. D.11.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件12.已知数列为等差数列,为其前项和,,则()A.7 B.14 C.28 D.84二、填空题:本题共4小题,每小题5分,共20分。13.设全集,,,则______.14.以,为圆心的两圆均过,与轴正半轴分别交于,,且满足,则点的轨迹方程为_________.15.已知数列为等差数列,数列为等比数列,满足,其中,,则的值为_______________.16.将函数的图象向右平移个单位长度后得到函数的图象,则函数的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)如果对所有的≥0,都有≤,求的最小值;(Ⅲ)已知数列中,,且,若数列的前n项和为,求证:.18.(12分)某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:同意不同意合计男生a5女生40d合计100(1)求a,d的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为X,求X的分布列及数学期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63519.(12分)在直角坐标系中,直线l过点,且倾斜角为,以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.求直线l的参数方程和曲线C的直角坐标方程,并判断曲线C是什么曲线;设直线l与曲线C相交与M,N两点,当,求的值.20.(12分)在极坐标系中,曲线的极坐标方程为(1)求曲线与极轴所在直线围成图形的面积;(2)设曲线与曲线交于,两点,求.21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.(1)求曲线的参数方程;(2)求面积的最大值.22.(10分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合.以下记为的元素个数.(1)给出所有的元素均小于的好集合.(给出结论即可)(2)求出所有满足的好集合.(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则,所以平面区域的面积,解得,此时,由图可得当过点时,取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.2、C【解析】
先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.3、B【解析】
先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.【详解】解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,其和等于16的结果,共2种等可能的结果,故概率.故选:B.【点睛】古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.4、B【解析】分析:利用的恒等式,将分子、分母同时乘以,化简整理得详解:,故选B点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.5、D【解析】
利用抛物线的定义,求得p的值,由利用两点间距离公式求得,根据二次函数的性质,求得,由取得最小值为,求得结果.【详解】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.6、B【解析】
根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【详解】由f(x+2)=f(x),得f(x)是周期函数且周期为2,先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,,所以,选项A错误;选项B,因为,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确;选项C,,所以,即,选项C错误;选项D,,选项D错误.故选:B.【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.7、B【解析】
求得双曲线的一条渐近线方程,设出的坐标,由题意求得,运用直线的斜率公式可得,,,再由等差数列中项性质和离心率公式,计算可得所求值.【详解】设双曲线的一条渐近线方程为,且,由,可得以为圆心,为半径的圆与渐近线交于,可得,可取,则,设,,则,,,由,,成等差数列,可得,化为,即,可得,故选:.【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运算能力,意在考查学生对这些知识的理解掌握水平.8、B【解析】
根据条件可知方程有且只有一个实根等价于函数的图象与直线只有一个交点,作出图象,数形结合即可.【详解】解:因为条件等价于函数的图象与直线只有一个交点,作出图象如图,由图可知,,故选:B.【点睛】本题主要考查函数图象与方程零点之间的关系,数形结合是关键,属于基础题.9、A【解析】
建立平面直角坐标系,求出直线,设出点,通过,找出与的关系.通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围.【详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线,设点,所以由得,即,所以,由及,解得,由二次函数的图像知,,所以的取值范围是.故选A.【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用.10、B【解析】
直接进行集合的并集、交集的运算即可.【详解】解:;∴.故选:B.【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.11、A【解析】
根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.12、D【解析】
利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【详解】,解得..故选:D【点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求出集合,,然后根据交集、补集的定义求解即可.【详解】解:,或;∴;∴.故答案为:.【点睛】本题主要考查集合的交集、补集运算,属于基础题.14、【解析】
根据圆的性质可知在线段的垂直平分线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定轨迹方程.【详解】,,和的中点坐标为,且在线段的垂直平分线上,,即,同理可得:,,,点的轨迹方程为.故答案为:.【点睛】本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果.15、【解析】
根据题意,判断出,根据等比数列的性质可得,再令数列中的,,,根据等差数列的性质,列出等式,求出和的值即可.【详解】解:由,其中,,可得,则,令,,可得.①又令数列中的,,,根据等差数列的性质,可得,所以.②根据①②得出,.所以.故答案为.【点睛】本题主要考查等差数列、等比数列的性质,属于基础题.16、【解析】
由三角函数图象相位变换后表达函数解析式,再利用三角恒等变换与辅助角公式整理的表达式,进而由三角函数值域求得最大值.【详解】将函数的图象向右平移个单位长度后得到函数的图象,则所以,当函数最大,最大值为故答案为:【点睛】本题考查表示三角函数图象平移后图象的解析式,还考查了利用三角恒等变换化简函数式并求最值,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)函数在上单调递减,在单调递增;(Ⅱ);(Ⅲ)证明见解析.【解析】
(Ⅰ)先求出函数f(x)的导数,通过解关于导数的不等式,从而求出函数的单调区间;(Ⅱ)设g(x)=f(x)﹣ax,先求出函数g(x)的导数,通过讨论a的范围,得到函数的单调性,从而求出a的最小值;(Ⅲ)先求出数列是以为首项,1为公差的等差数列,,,问题转化为证明:,通过换元法或数学归纳法进行证明即可.【详解】解:(Ⅰ)f(x)的定义域为(﹣1,+∞),,当时,f′(x)<2,当时,f′(x)>2,所以函数f(x)在上单调递减,在单调递增.(Ⅱ)设,则,因为x≥2,故,(ⅰ)当a≥1时,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)单调递减,而g(2)=2,所以对所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)当1<a<1时,2<1﹣a<1,若,则g′(x)>2,g(x)单调递增,而g(2)=2,所以当时,g(x)>2,即f(x)>ax;(ⅲ)当a≤1时,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)单调递增,而g(2)=2,所以对所有的x>2,g(x)>2,即f(x)>ax;综上,a的最小值为1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an•an+1,由a1=1得,an≠2,所以,数列是以为首项,1为公差的等差数列,故,,,⇔,由(Ⅱ)知a=1时,,x>2,即,x>2.法一:令,得,即因为,所以,故.法二:⇔下面用数学归纳法证明.(1)当n=1时,令x=1代入,即得,不等式成立(1)假设n=k(k∈N*,k≥1)时,不等式成立,即,则n=k+1时,,令代入,得,即:,由(1)(1)可知不等式对任何n∈N*都成立.故.考点:1利用导数研究函数的单调性;1、利用导数研究函数的最值;3、数列的通项公式;4、数列的前项和;5、不等式的证明.18、(1),有97.5%的把握认为是否同意父母生“二孩”与“性别”有关;(2)详见解析.【解析】
(1)根据表格及同意父母生“二孩”占60%可求出,,根据公式计算结果即可确定有97.5%的把握认为是否同意父母生“二孩”与“性别”有关(2)由题意可知X服从二项分布,利用公式计算概率及期望即可.【详解】(1)因为100人中同意父母生“二孩”占60%,所以,文(2)由列联表可得而所以有97.5%的把握认为是否同意父母生“二孩”与“性别”有关(2)①由题知持“同意”态度的学生的频率为,即从学生中任意抽取到一名持“同意”态度的学生的概率为.由于总体容量很大,故X服从二项分布,即从而X的分布列为X01234X的数学期望为【点睛】本题主要考查了相关性检验、二项分布,属于中档题.19、(Ⅰ)曲线是焦点在轴上的椭圆;(Ⅱ).【解析】试题分析:(1)由题易知,直线的参数方程为,(为参数),;曲线的直角坐标方程为,椭圆;(2)将直线代入椭圆得到,所以,解得.试题解析:(Ⅰ)直线的参数方程为.曲线的直角坐标方程为,即,所以曲线是焦点在轴上的椭圆.(Ⅱ)将的参数方程代入曲线的直角坐标方程为得,,得,,20、(1);(2)【解析】
(1)利用互化公式,将曲线的极坐标方程化为直角坐标方程,得出曲线与极轴所在直线围成的图形是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,即可求出面积;(2)联立方程组,分别求出和的坐标,即可求出.【详解】解:(1)由于的极坐标方程为,根据互化公式得,曲线的直角坐标方程为:当时,,当时,,则曲线与极轴所在直线围成的图形,是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,∴围成图形的面积.(2)由得,其直角坐标为,化直角坐标方程为,化直角坐标方程为,∴,∴.【点睛】本题考查利用互化公式将极坐标方程化为直角坐标方程,以及联立方程组求交点坐标,考查计算能力.21、(1)(为参数);(2).【解析】
(1)根据伸缩变换结合曲线的参数方程可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 灯具制造工岗后评优考核试卷含答案
- 景泰蓝点蓝工安全宣教考核试卷含答案
- 2024年安徽外国语学院辅导员考试参考题库附答案
- 染料合成工诚信模拟考核试卷含答案
- 钨钼冶炼工岗前客户服务考核试卷含答案
- 漆器镶嵌装饰工安全宣教知识考核试卷含答案
- 2024年泰山科技学院辅导员招聘考试真题汇编附答案
- 消防设施监控操作员风险评估与管理考核试卷含答案
- 2025四川雅安雨城区在职专职网格员定向招聘社区工作者90人备考题库附答案
- 2025四川绵阳市涪城区工区街道办事处招聘专职网格员29人备考题库附答案
- 北京通州产业服务有限公司招聘备考题库必考题
- 2026南水北调东线山东干线有限责任公司人才招聘8人笔试模拟试题及答案解析
- 伊利实业集团招聘笔试题库2026
- 2026年基金从业资格证考试题库500道含答案(完整版)
- DB32/T+4396-2022《勘察设计企业质量管理标准》-(高清正版)
- 老年照护初级理论知识测试题库与答案
- 二级建造师继续教育题库带答案(完整版)
- 地下储气库建设的发展趋势
- 台州市街头镇张家桐村调研报告
- 压力排水管道安装技术交底
- 糖代谢紊乱生物化学检验
评论
0/150
提交评论