版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题02三角形中的倒角模型之燕尾(飞镖)型、风筝模型近年来各地考试中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。熟悉这些模型可以快速得到角的关系,求出所需的角。本专题就燕尾(飞镖)型、风筝(鹰爪)、翻角模型进行梳理及对应试题分析,方便掌握。大家在掌握几何模型时,多数同学会注重模型结论,而忽视几何模型的证明思路及方法,导致本末倒置。要知道数学题目的考察不是一成不变的,学数学更不能死记硬背,要在理解的基础之上再记忆,这样才能做到对于所学知识的灵活运用,并且更多时候能够启发我们解决问题的关键就是基于已有知识、方法的思路的适当延伸、拓展,所以学生在学习几何模型要能够做到的就是:①认识几何模型并能够从题目中提炼识别几何模型;②记住结论,但更为关键的是记住证明思路及方法;③明白模型中常见的易错点,因为多数题目考察的方面均源自于易错点。当然,以上三点均属于基础要求,因为题目的多变性,若想在几何学习中突出,还需做到的是,在平时的学习过程中通过大题量的训练,深刻认识几何模型,认真理解每一个题型,做到活学活用!TOC\o"1-4"\h\z\u 1模型1.飞镖模型(燕尾)模型 1模型2.风筝(鹰爪)模型 5模型3.角内(外)翻模型 7 9模型1.飞镖模型(燕尾)模型飞镖(燕尾)模型看起来特别简单,在复杂几何图形倒角时往往有巧妙的作用。因为模型像飞镖(回旋镖)或燕尾,所以我们称为飞镖(燕尾)模型。图1图2图3基本模型:条件:如图1,凹四边形ABCD;结论:①;②。证明:连接AC并延长至点P;在△ABC中,∠BCP=∠BAC+∠B;在△ACD中,∠DCP=∠CAD+∠D;又∵∠BAD=∠BAC+∠DAC,∠BCD=∠BCP+∠DCP;∴∠BAD+∠B+∠D=∠BCD。延长BC交AD于点P;在△ABQ中,;在△CDQ中,。即:,故。拓展模型1:条件:如图2,BO平分∠ABC,OD平分∠ADC;结论:∠O=(∠A+∠C)。证明:∵BO平分∠ABC,OD平分∠ADC;∴∠ABO=∠ABC;∠ADO=∠ADC;根据飞镖模型:∠BOD=∠ABO+∠ADO+∠A=∠ABC+∠ADC+∠A;∠BCD=∠ABC+∠ADC+∠A;∴2∠BOD=∠ABC+∠ADC+2∠A=∠BCD+∠A;即∠O=(∠A+∠C)。拓展模型2:条件:如图3,AO平分∠DAB,CO平分∠BCD;结论:∠O=(∠D-∠B)。证明:根据飞镖模型:=++,∴∠DCB-∠DAB=∠D+∠B,∵AO平分∠DAB,CO平分∠BCD,∴∠DCO=∠DCB,∠DAO=∠DAB,∴∠DCO-∠DAO=(∠DCB-∠DAB)=(∠D+∠B),∵∠DEA=∠OEC,∴∠D+∠DAO=∠O+∠DCO,∴∠D-∠O=∠DCO-∠DAO,∴∠D-∠O=(∠D+∠B),即∠O=(∠D-∠B)例1.(2023·福建南平·八年级校考阶段练习)请阅读下列材料,并完成相应的任务:有趣的“飞镖图”.如图,这种形似飞镖的四边形,可以形象地称它为“飞镖图”.当我们仔细观察后发现,它实际上就是凹四边形.那么它具有哪些性质呢?又将怎样应用呢?下面我们进行认识与探究:凹四边形通俗地说,就是一个角“凹”逃去的四边形,其性质有:凹四边形中最大内角外面的角等于其余三个内角之和.(即如图1,∠ADB=∠A+∠B+∠C)理由如下:方法一:如图2,连结AB,则在△ABC中,∠C+∠CAB+∠CBA=180°,即∠1+∠2+∠3+∠4+∠C=180°,又:在△ABD中,∠1+∠2+∠ADB=180°,∴∠ADB=∠3+∠4+∠C,即∠ADB=∠CAD+∠CBD+∠C.方法二:如图3,连结CD并延长至F,∵∠1和∠3分别是△ACD和△BCD的一个外角,..........大家在探究的过程中,还发现有很多方法可以证明这一结论.任务:(1)填空:“方法一”主要依据的一个数学定理是_________;(2)探索及应用:根据“方法二”中辅助线的添加方式,写出该证明过程的剩余部分.例2.(2023·湖北·八年级专题练习)在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果,,那么的度数是(
).A. B. C. D.例3.(2023·福建三明·八年级统考期末)如图1所示的图形,像我们常见的符号——箭号.我们不妨把这样图形叫做“箭头四角形”.
探究:(1)观察“箭头四角形”,试探究与、、之间的关系,并说明理由;应用:(2)请你直接利用以上结论,解决以下两个问题:①如图2,把一块三角尺放置在上,使三角尺的两条直角边、恰好经过点、,若,则;②如图3,、的2等分线(即角平分线)、相交于点,若,,求的度数;拓展:(3)如图4,,分别是、的2020等分线(),它们的交点从上到下依次为、、、…、.已知,,则度.例4.(2023·广东·八年级期中)如图,在三角形ABC中,,为三角形内任意一点,连结AP,并延长交BC于点D.求证:(1);(2).模型2.风筝(鹰爪)模型图1图21)鹰爪模型:结论:∠A+∠O=∠1+∠2;证明:∵∠1是三角形ABO的外角,∴∠1=∠BAO+∠BOA;同理,∠2=∠CAO+∠COA;∴∠1+∠2=∠BAO+∠BOA+∠CAO+∠COA=∠BAO+∠CAO+∠BOA+∠COA=∠BAC+∠BOC=∠A+∠O。2)鹰爪模型(变形):结论:∠A+∠O=∠2-∠1。证明:∵∠1是三角形ABO的外角,∴∠1=∠BAO+∠BOA;同理,∠2=∠DAO+∠DOA;∴∠2-∠1=∠DAO+∠DOA-(∠BAO+∠BOA)=(∠DAO-∠BAO)+(∠DOA-∠BOA)=∠BAD+∠BOD=∠A+∠O。例1.(2023·四川绵阳·八年级校考阶段练习)如图,四边形ABCD中,、、分别为、、的外角判断下列大小关系何者正确?()A.B.C.D.例2.(2023·江苏连云港·七年级校考阶段练习)【问题情境】已知,在的两边上分别取点B、C,在的内部取一点O,连接、.设,,探索与、、之间的数量关系.【初步感知】如图1,当点O在的边上时,,此时,则与、、之间的数量关系是.【问题再探】(1)如图2,当点O在的内部时,请写出与、、之间的数量关系并说明理由;(2)如图3,当点O在的外部时,与、、之间的数量关系是________;【拓展延伸】(1)如图4,、的外角平分线相交于点P.①若,,则________°;②若且,则________°;③直接写出与、之间的数量关系;(2)如图5,的平分线与的外角平分线相交于点Q,则________(用、表示).例3.(23-24七年级下·山东聊城·期末)如图,在中,,点、是边、上的点,点是平面内一动点.令,,.(1)若点在线段上,如图1所示,,求的值;(2)若点在边上运动,如图2所示,则、、之间的关系________;(3)若点运动到边的延长线上,如图3所示,则、、之间有何关系?猜想并说明理由;(4)若点运动到外,如图4所示,则请表示、、之间的关系,并说明理由.模型3.角内(外)翻模型图3图4条件:如图3,将三角形纸片ABC沿EF边折叠,当点C落在四边形ABFE内部时,结论:2∠C=∠1+∠2;证明:∵∠1是三角形CC’E的外角,∴∠1=∠ECC’+∠EC’C;同理,∠2=∠FCC’+∠FC’C;∴∠1+∠2=∠ECC’+∠EC’C+∠FCC’+∠FC’C=∠ECC’+∠FCC’+∠EC’C+∠FC’C=∠EC’F+∠FCE=2∠C。条件:如图4,将三角形纸片ABC沿EF边折叠,当点C落在四边形ABFE外部时,结论:2∠C=∠2-∠1。证明:∵∠1是三角形CC’E的外角,∴∠1=∠ECC’+∠EC’C;同理,∠2=∠FCC’+∠FC’C;∴∠2-∠1=∠FCC’+∠FC’C-(∠ECC’+∠EC’C)=(FCC’-∠ECC’)+(∠FC’C--∠EC’C)=∠EC’F+∠FCE=2∠C。例1.(23-24八年级上·广西南宁·期中)如图,在折纸活动中,小李制作了一张的纸片,点,分别在边AB,上,将沿着DE折叠压平,与重合,若,则.例2.(23-24八年级下·山东德州·开学考试)如图,把纸片沿折叠,当点落在四边形的外面时,此时测得,,则的度数为(
)A. B. C. D.例3.(2023春·江苏宿迁·七年级校考期中)(1)如图1,将纸片沿折叠,使点落在四边形内点的位置.则之间的数量关系为:_______;(2)如图2,若将(1)中“点落在四边形内点的位置”变为“点落在四边形外点的位置”,则此时之间的数量关系为:_________;(3)如图3,将四边形纸片(,与不平行)沿折叠成图3的形状,若,,求的度数;(4)在图3中作出的平分线,试判断射线的位置关系,当点在边上向点移动时(不与点重合),的大小随之改变(其它条件不变),上述,的位置关系改变吗?为什么?
1.(2024.山东七年级期中)如图,把△ABC纸片沿DE折叠,当A落在四边形BCDE内时,则∠A与∠1+∠2之间有始终不变的关系是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3A=∠1+∠2D.3∠A=2(∠1+∠2)2.(2023·河南·八年级假期作业)如图,在中,,与的角平分线交于,与的角平分线交于点,依此类推,与的角平分线交于点,则的度数是(
)A. B. C. D.3.(2023·广东广州·八年级统考期中)如图,∠1,∠2,∠3,∠4满足的关系式是(
)A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2-∠34.(2023春·河南洛阳·七年级统考期末)如图,在五边形中,若去掉一个的角后得到一个六边形,则的度数为(
)
A. B. C. D.5.(2024·江苏·模拟预测)如图,将四边形纸片沿折叠,使点落在四边形外点的位置,点落在四边形内点的位置,若,,则等于()A. B. C. D.6.(2023·福建三明·八年级统考期末)如图△ABC中,将边BC沿虚线翻折,若∠1+∠2=110°,则∠A的度数是度.7.(2023春·山东潍坊·七年级统考期末)在中,,,将、按照如图所示折叠,若,则°8.(2023·河北保定·统考模拟预测)如图,用铁丝折成一个四边形ABCD(点C在直线BD的上方),且∠A=70°,∠BCD=120°,若使∠ABC、∠ADC平分线的夹角∠E的度数为100°,可保持∠A不变,将∠BCD(填“增大”或“减小”)°.9.(2023春·江苏·七年级专题练习)如图,是的平分线,是的平分线,与交于,若,,则.10.(2023·重庆·八年级统考期末)已知,如图,P,Q为三角形ABC内两点,B,P,Q,C构成凸四边形.
求证:.11.(2023春·福建福州·七年级校考期末)如图①,凹四边形形似圆规,这样的四边形称为“规形”,(1)如图①,在规形中,若,,,则______°;(2)如图②,将沿,翻折,使其顶点A,B均落在点O处,若,则______°;(3)如图③,在规形中,、的角平分线、交于点E,且,试探究,,之间的数量关系,并说明理由.12.(2023·北京·一模)在课外活动中,我们要研究一种凹四边形——燕尾四边形的性质.定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).(1)根据凹四边形的定义,下列四边形是凹四边形的是(填写序号);①②③定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).特别地,有三边相等的凹四边形不属于燕尾四边形.小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究.下面是小洁的探究过程,请补充完整:(2)通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;(3)如图2,在燕尾四边形ABCD中,AB=AD=6,BC=DC=4,∠BCD=120°,求燕尾四边形ABCD的面积(直接写出结果).13.(2023春·福建福州·七年级校考期末)如图①,凹四边形形似圆规,这样的四边形称为“规形”,(1)如图①,在规形中,若,,,则______°;(2)如图②,将沿,翻折,使其顶点A,B均落在点O处,若,则______°;(3)如图③,在规形中,、的角平分线、交于点E,且,试探究,,之间的数量关系,并说明理由.14.(2023·河北·八年级专题练习)如图①所示是一个飞镖图案,连接AB,BC,我们把四边形ABCD叫做“飞镖模型”.(1)求证:;(2)如图②所示是一个变形的飞镖图案,CE与BF交于点D,若,求的度数.15.(2023春·江苏连云港·七年级校联考阶段练习)我们在小学已经学习了“三角形内角和等于”.在三角形纸片中,点D,E分别在边上,将沿折叠,点C落在点的位置.(1)如图1,当点C落在边上时,若,则=,可以发现与的数量关系是;(2)如图2,当点C落在内部时,且,,求的度数;(3)如图3,当点C落在外部时,若设的度数为x,的度数为y,请求出与x,y之间的数量关系.16.(2024·江苏扬州·七年级校考期末)如图①,把纸片沿折叠,使点A落在四边形内部点的位置,通过计算我们知道:.请你继续探索:(1)如果把纸片沿折叠,使点A落在四边形的外部点的位置,如图②,此时与之间存在什么样的关系?(2)如果把四边形沿时折叠,使点A、D落在四边形BCFE的内部、的位置,如图③,你能求出、、与之间的关系吗?(直接写出关系式即可)17.(2024·江苏·七年级统考期中)【概念学习】在平面中,我们把大于且小于的角称为优角,如果两个角相加等于,那么称这两个角互为组角,简称互组.(1)若、互为组角,且,则________;【理解运用】习惯上,我们把
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年注册会计师考试 会计科目专项训练试卷及答案详解:现金流量表编制
- 2025广东江门开平市公用事业集团有限公司招聘4人备考题库及答案详解(新)
- 2026吉林大学白求恩第一医院教学部招聘备考题库完整参考答案详解
- 2026年安徽省公务员考试招录7195名备考题库及答案详解参考
- 2026东风汽车研发总院“全球博士人才”招聘备考题库及答案详解(易错题)
- 大连医保人员管理制度(3篇)
- 医院病区处置室管理制度(3篇)
- 家庭作坊财务管理制度(3篇)
- 制定车票管理制度的意义(3篇)
- 2025年注册会计师考试 会计科目冲刺模拟试题库及答案详解
- 2025年物业管理中心工作总结及2026年工作计划
- 创伤性脾破裂的护理
- 蓬深102井钻井工程(重新报批)项目环境影响报告表
- 马路切割承包协议书
- 大模型金融领域可信应用参考框架
- (新教材)2025年人教版七年级上册历史期末复习常考知识点梳理复习提纲(教师版)
- 学校控辍保学工作流程及四书一表一单
- 塔吊拆除应急预案
- 中国全色盲诊疗专家共识2026
- 20052-2024电力变压器能效限定值及能效等级
- 2025年环境卫生学与消毒灭菌效果监测试卷(附答案)
评论
0/150
提交评论