




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年浙教版高一数学上册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共5题,共10分)1、【题文】函数的定义域为则函数的定义域为()A.B.C.D.2、下列函数中,最小正周期为且图像关于直线对称的是()A.B.C.D.3、设a是第四象限角,则下列函数值一定为负数的是()A.sinB.cosC.tanD.cos2α4、当a为任意实数时,直线(a-1)x-y+2a+1=0恒过的定点是()A.(2,3)B.(-2,3)C.(1,-)D.(-2,0)5、已知角娄脕
的终边经过点P(m,鈭�3),脟脪cos娄脕=鈭�45
则m
等于(
)
A.鈭�114
B.114
C.鈭�4
D.4
评卷人得分二、填空题(共6题,共12分)6、已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+4x,那么当x<0时,f(x)=____.7、【题文】若集合A={x|2x-1|>0},B={x||x|<1},则A∩B=_________.8、【题文】规定与是两个运算符号,其运算法则如下:对任意实数有:用列举法表示集合A=____9、函数y=3cosx(0≤x≤π)的图象与直线y=-3及y轴围成的图形的面积为______.10、如图,⊙O的半径为10,弦AB的长为12,OD⊥AB,交AB于点D,交⊙O于点C,则OD=______,CD=______.11、若f(tanx)=sin2x
则f(鈭�1)
的值是______.评卷人得分三、作图题(共9题,共18分)12、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.13、作出下列函数图象:y=14、作出函数y=的图象.15、画出计算1++++的程序框图.16、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.
17、请画出如图几何体的三视图.
18、某潜艇为躲避反潜飞机的侦查,紧急下潜50m后,又以15km/h的速度,沿北偏东45°前行5min,又以10km/h的速度,沿北偏东60°前行8min,最后摆脱了反潜飞机的侦查.试画出潜艇整个过程的位移示意图.19、绘制以下算法对应的程序框图:
第一步;输入变量x;
第二步,根据函数f(x)=
对变量y赋值;使y=f(x);
第三步,输出变量y的值.20、已知简单组合体如图;试画出它的三视图(尺寸不做严格要求)
评卷人得分四、证明题(共4题,共36分)21、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.22、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.
(1)求证:E为的中点;
(2)若CF=3,DE•EF=,求EF的长.23、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:
(1)AD=AE
(2)PC•CE=PA•BE.24、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.评卷人得分五、综合题(共4题,共8分)25、抛物线y=ax2+bx+c(a≠0)过点A(1;-3),B(3,-3),C(-1,5),顶点为M点.
(1)求该抛物线的解析式.
(2)试判断抛物线上是否存在一点P;使∠POM=90°.若不存在,说明理由;若存在,求出P点的坐标.
(3)试判断抛物线上是否存在一点K,使∠OMK=90°,若不存在,说明理由;若存在,求出K点的坐标.26、如图,△ABC中,AB=5,BC=6,BD=BC;AD⊥BC于D,E为AB延长线上的一点,且EC交AD的延长线于F.
(1)设BE为x;DF为y,试用x的式子表示y.
(2)当∠ACE=90°时,求此时x的值.27、已知函数f(x)=ax2+4x+b,其中a<0,a、b是实数,设关于x的方程f(x)=0的两根为x1,x2;f(x)=x的两实根为α;β.
(1)若|α-β|=1,求a、b满足的关系式;
(2)若a、b均为负整数;且|α-β|=1,求f(x)解析式;
(3)试比较(x1+1)(x2+1)与7的大小.28、已知抛物线y=ax2-2ax+c-1的顶点在直线y=-上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α2+β2=10.
(1)求这个抛物线的解析式;
(2)设这个抛物线与y轴的交点为P;H是线段BC上的一个动点,过H作HK∥PB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;
(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式.参考答案一、选择题(共5题,共10分)1、A【分析】【解析】因为函数的定义域为则函数中因此可知定义域为选A【解析】【答案】A2、B【分析】【解答】将代入y=≠±1,排除A;将代入可得y=≠±1,排除C,又≠π;排除D,故选B
【分析】熟练掌握三角函数的性质是解决此类问题的关键,另代入法往往是解决选择题的好方法。3、C【分析】【解答】解:当α=300°时,=150°;
这个角的正弦是正数;
当α=﹣40°时;=﹣20°;
这个角的余弦一定是正值;
此时2α=﹣80°;这个角的余弦一定是正数;
综上可知tan是负数;
故选:C.
【分析】举出第四象限的两个角度,求出半角和二倍角,检验角的正弦,余弦与正切的正负,只要有负数的情况出现,就可以得到结果.4、B【分析】解:当a为任意实数时;直线(a-1)x-y+2a+1=0恒过定点P;
则直线可化为(x+2)a+(-x-y+1)=0;
对于a为任意实数时;
此式恒成立有
得
故定点坐标是(-2;3).
故选B.
直线过定点;说明直线(a-1)x-y+2a+1=0是直线系方程,先求出定点P即得.
本题考查直线系方程,本题通过恒过定点问题来考查学生方程转化的能力及直线系的理解.【解析】【答案】B5、C【分析】解:隆脽cos娄脕=鈭�45<0
隆脿娄脕
为第II
象限或第III
象限的角。
又由角娄脕
的终边经过点P(m,鈭�3)
故娄脕
为第III
象限的角,即m<0
则cos娄脕=鈭�45=mm2+(鈭�3)2
解得m=鈭�4
或m=4(
舍去)
故选C
由已知中已知角娄脕
的终边经过点P(m,鈭�3),脟脪cos娄脕=鈭�45
我们易根据三角函数的定义确定m
的符号,并构造关于m
的方程,解方程即可求出满足条件的m
的值.
本题考查的知识点是任意角的三角函数的定义,其中根据三角函数的定义确定m
的符号,并构造关于m
的方程,是解答本题的关键.【解析】C
二、填空题(共6题,共12分)6、略
【分析】
【解析】
设x<0;则-x>0;
∵当x>0时,f(x)=x2+4x,∴f(-x)=x2-4x;
∵f(x)是定义在R上的奇函数,∴f(x)=-f(-x)=-x2+4x;
故答案为:-x2+4x.
【解析】【答案】先设x<0,则-x>0,代入f(x)=x2+4x并进行化简;再利用f(x)=-f(-x)进行求解.
7、略
【分析】【解析】A=B=(-1,1),A∩B=.【解析】【答案】8、略
【分析】【解析】略【解析】【答案】A={1,2}9、略
【分析】解:函数y=3cosx(0≤x≤π)的图象与直线y=-3及y轴围成的图形如图:
面积为=(3sinx+3x)|=3π;
故答案为:3π.
由题意画出图形;利用定积分表示曲边梯形的面积,然后计算求值.
本题考查了定积分的应用;关键是利用定积分表示出所围成的图形面积.【解析】3π10、略
【分析】解:OD⊥AB;OD过圆心O;
∴AD=BD=AB=6;
由勾股定理得:OD===8;
OD=8
CD=OC-OD=10-8=2;
∴CD=2;
由OD⊥AB,OD过圆心O,AD=BD=AB=6,利用勾股定理可知:OD==8;CD=OC-OD=10-8=2.
本题考查垂弦定理,考查勾股定理的应用,考查数形结合思想,考查计算能力,属于基础题.【解析】8;211、略
【分析】解:令tanx=鈭�1
隆脿x=k娄脨鈭�娄脨4
或x=k娄脨+3娄脨4
隆脿sin2x=鈭�1
即:f(鈭�1)=鈭�1
故答案为:鈭�1
令tanx=鈭�1
则有x=k娄脨鈭�娄脨4
或x=k娄脨+3娄脨4
从而解得sin2x=鈭�1
可得到结果.
本题主要考查函数定义及解析式的应用,同时还考查了转化思想和换元思想.【解析】鈭�1
三、作图题(共9题,共18分)12、略
【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.
∵点A与点A′关于CD对称;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:铺设管道的最省费用为10000元.13、【解答】幂函数y={#mathml#}x32
{#/mathml#}的定义域是[0;+∞),图象在第一象限,过原点且单调递增,如图所示;
【分析】【分析】根据幂函数的图象与性质,分别画出题目中的函数图象即可.14、【解答】图象如图所示。
【分析】【分析】描点画图即可15、解:程序框图如下:
【分析】【分析】根据题意,设计的程序框图时需要分别设置一个累加变量S和一个计数变量i,以及判断项数的判断框.16、解:程序框图如下:
【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.17、解:如图所示:
【分析】【分析】由几何体是圆柱上面放一个圆锥,从正面,左面,上面看几何体分别得到的图形分别是长方形上边加一个三角形,长方形上边加一个三角形,圆加一点.18、解:由题意作示意图如下;
【分析】【分析】由题意作示意图。19、解:程序框图如下:
【分析】【分析】该函数是分段函数,当x取不同范围内的值时,函数解析式不同,因此当给出一个自变量x的值时,必须先判断x的范围,然后确定利用哪一段的解析式求函数值,因为函数解析式分了三段,所以判断框需要两个,即进行两次判断,于是,即可画出相应的程序框图.20、
解:几何体的三视图为:
【分析】【分析】利用三视图的作法,画出三视图即可.四、证明题(共4题,共36分)21、略
【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
从而四边形OBFC为平行四边形;
所以BM=MC.22、略
【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE
OA=OE=>∠OAE=∠OEA
DE切圆O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
⇒OE∥AD
=>E为的中点.
(2)解:连CE;则∠AEC=90°,设圆O的半径为x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圆O于E=>△FCE∽△FEA
∴,
∴
即DE•EF=AD•CF
DE•EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC•FA=3x(3+2)=15
∴EF=23、略
【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;
即可得到结论;
(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,
∵PC是⊙O的切线;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB为⊙O的直径;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC•CE=PA•BE.24、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.五、综合题(共4题,共8分)25、略
【分析】【分析】(1)将A(1,-3),B(3,-3),C(-1,5)三点坐标代入y=ax2+bx+c中,列方程组求a、b;c的值;得出抛物线解析式;
(2)抛物线上存在一点P,使∠POM=90˚.设(a,a2-4a);过P点作PE⊥y轴,垂足为E;过M点作MF⊥y轴,垂足为F,利用互余关系证明Rt△OEP∽Rt△MFO,利用相似比求a即可;
(3)抛物线上必存在一点K,使∠OMK=90˚.过顶点M作MN⊥OM,交y轴于点N,在Rt△OMN中,利用互余关系证明△OFM∽△MFN,利用相似比求N点坐标,再求直线MN解析式,将直线MN解析式与抛物线解析式联立,可求K点坐标.【解析】【解答】解:(1)根据题意,得,解得;
∴抛物线的解析式为y=x2-4x;
(2)抛物线上存在一点P;使∠POM=90˚.
x=-=-=2,y===-4;
∴顶点M的坐标为(2;-4);
设抛物线上存在一点P,满足OP⊥OM,其坐标为(a,a2-4a);
过P点作PE⊥y轴;垂足为E;过M点作MF⊥y轴,垂足为F.
则∠POE+∠MOF=90˚;∠POE+∠EPO=90˚.
∴∠EPO=∠FOM.
∵∠OEP=∠MFO=90˚;
∴Rt△OEP∽Rt△MFO.
∴OE:MF=EP:OF.
即(a2-4a):2=a:4;
解得a1=0(舍去),a2=;
∴P点的坐标为(,);
(3)过顶点M作MN⊥OM;交y轴于点N.则∠FMN+∠OMF=90˚.
∵∠MOF+∠OMF=90˚;
∴∠MOF=∠FMN.
又∵∠OFM=∠MFN=90˚;
∴△OFM∽△MFN.
∴OF:MF=MF:FN.即4:2=2:FN.∴FN=1.
∴点N的坐标为(0;-5).
设过点M,N的直线的解析式为y=kx+b,则;
解得,∴直线的解析式为y=x-5;
联立得x2-x+5=0,解得x1=2,x2=;
∴直线MN与抛物线有两个交点(其中一点为顶点M).
另一个交点K的坐标为(,-);
∴抛物线上必存在一点K,使∠OMK=90˚.坐标为(,-).26、略
【分析】【分析】(1)过B作BG∥AF交BCEC于G,则可以得到△CDF∽△CBG,接着利用相似三角形的性质得到,在Rt△ABD中,利用勾股定理可得;又△EGB∽△EFA,由此利用相似三角形的性质即可求出y与x的函数关系;
(2)当∠ACE=90°时,则有∠FCD=∠DAC,由此得到Rt△ADC∽Rt△CDF,接着利用相似三角形的性质得到CD2=AD•DF,所以16=,从而得到,代入,即可求出x.【解析】【解答】解:(1)过B作BG∥AF交EC于G,
则△CDF∽△CBG;
∴;
∴;
在Rt△ABD中,可得;
又∵△EGB∽△EFA;
∴;
∴;
(2)当∠ACE=90°时;则有∠FCD=∠DAC;
∴Rt△ADC∽Rt△CDF;
∴;
∴CD2=AD•DF;
∴16=;
∴;
代入,有;
解得.27、略
【分析】【分析】(1)根据f(x)=x的两实根为α、β,可列出方程用a,b表示两根α,β,根据|α-β|=1,可求出a、b满足的关系式.
(2)根据(1)求出的结果和a、b均为负整数,且|α-β|=1,可求出a,b;从而求出f(x)解析式.
(3)因为关于x的方程f(x)=0的两根为x1,x2,用a和b表示出(x1+1)(x2+1),讨论a,b的关系可比较(x1+1)(x2+1)与7的大小的结论.【解析】【解答】解:(1)∵f(x)=x;
∴ax2+4x+b=x;
α=,β=.
∵|α-β|=1;
∴=|a|;
∴a2+4ab-9=0;
(2)∵a、b均为负整数,a2+4ab-9=0;
∴a(a+4b)=9,解得a=-1,b=-2.
∴f(x)=-x2+4x-2.
(3)∵关于x的方程f(x)=0的两根为x1,x2;
∴ax2+4x+b=0
∴x1x2=,x1+x2=-.
∴(x1+1)(x2+1)=x1x2+x1+x2+1=-+1.
-+1-7=;
∵a<0;
当b>6a+4时,(x1+1)(x2+1)<7.
当b=6a+4时,(x1+1)(x2+1)=7.
当b<6a+4时,(x1+1)(x2+1)>7.28、略
【分析】【分析】(1)把顶点A的坐标代入直线的解析式得出c=a+;根据根与系数的关系求出c=1-3a,得出方程组,求出方程组的解即可;
(2)求出P、B、C的坐标,BC=4,根据sin∠BCP==,和HK∥BP,得出=,求出PK=t;过H作HG⊥PC于G,根据三角形的面积公式即可求出答案;
(3)根据S=-(t-2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年智能体脂秤资金需求报告代可行性研究报告
- 2024年海洋测量仪器资金需求报告代可行性研究报告
- 2025年中国搬运装卸设备行业市场前景预测及投资价值评估分析报告
- 骨灰自然葬协议书
- 2025年中国PVC门窗型材行业市场前景预测及投资价值评估分析报告
- 2025年中国PSA纤维行业市场前景预测及投资价值评估分析报告
- 餐饮店合股合同范本
- 磨毛机转让合同范本
- 幽默版离婚协议书
- 安置房担保协议书
- 产程中人文关怀精选课件
- 人力资源工作时间节点表
- 2021年高考地理真题试卷(广东卷)含答案
- XMT温度控制仪说明书
- 19QAKE质量保证关键要素(Quality Assurance Key Elements)稽核手册
- 下土地岭滑坡稳定性分析及风险计算
- 【小升初】北师大版2022-2023学年安徽省安庆市怀宁县六年级下册数学期末试卷(一)含解析
- 水文专业有偿服务收费管理试行办法(附收费标准)(共42页)
- 篮球--------原地单手肩上投篮 课件(19张幻灯片)
- 肺癌患者护理查房--ppt课件
- 《北京市房屋建筑和市政基础设施工程竣工验收管理办法》(2015年4月1日起实施)
评论
0/150
提交评论