2025年浙科版高一数学上册阶段测试试卷含答案_第1页
2025年浙科版高一数学上册阶段测试试卷含答案_第2页
2025年浙科版高一数学上册阶段测试试卷含答案_第3页
2025年浙科版高一数学上册阶段测试试卷含答案_第4页
2025年浙科版高一数学上册阶段测试试卷含答案_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年浙科版高一数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、sin210°=()

A.

B.

C.-

D.-

2、若实数满足的取值范围为().A.B.C.D.3、【题文】已知则()A.B.C.D.4、某隧道入口竖立着“限高4.5米”的警示牌,是指示司机要想安全通过隧道,应使车载货物高度h满足关系为()A.h<4.5B.h>4.5C.h≤4.5D.h≥4.55、下列各式中,值为的是()A.B.C.D.评卷人得分二、填空题(共9题,共18分)6、若a>b,则3a____3b,a+2____b+2,-5a____-5b.7、当x∈[6,8]时,+=____.8、定义在R上的函数满足则的值为.9、____;10、等差数列前12项和为354,在前12项中偶数项和与奇数项和之比为32︰27,则公差d=.11、【题文】已知直线(其中为非零实数)与圆相交于两点,O为坐标原点,且为直角三角形,则的最小值为____.12、【题文】若a>0,b>0,且=1,则a+2b的最小值为________.13、【题文】已知偶函数f(x)满足f(x+2)=xf(x)(x∈R),则f(1)=______.14、已知logab+logba=(a>b>1),则=______.评卷人得分三、证明题(共6题,共12分)15、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.

求证:(1)∠CFD=∠CAD;

(2)EG<EF.16、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.

(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.17、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.

(1)求证:E为的中点;

(2)若CF=3,DE•EF=,求EF的长.18、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.19、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.20、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、作图题(共4题,共8分)21、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.22、画出计算1++++的程序框图.23、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.

24、某潜艇为躲避反潜飞机的侦查,紧急下潜50m后,又以15km/h的速度,沿北偏东45°前行5min,又以10km/h的速度,沿北偏东60°前行8min,最后摆脱了反潜飞机的侦查.试画出潜艇整个过程的位移示意图.评卷人得分五、计算题(共4题,共32分)25、(2005•兰州校级自主招生)已知四边形ABCD是正方形,且边长为2,延长BC到E,使CE=-,并作正方形CEFG,(如图),则△BDF的面积等于____.26、方程组的解为____.27、△ABC中,已知∠A、∠B、∠C的对边长分别为a、b、c,∠C=120°,且2b=a+c,求2cot-cot的值.28、如图,直角△ABC中,∠BAC=90°,AB=AC=15,AE为过点A的直线,BD⊥AE于D,CE⊥AE于E,CE=9,则DE=____.评卷人得分六、综合题(共4题,共24分)29、如图;⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.设AD=x,BC=y.

(1)求证:AM∥BN;

(2)求y关于x的关系式;

(3)求四边形ABCD的面积S.30、如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(4;0);与y轴正半轴交于点E(0,4),边长为4的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;

(1)求拋物线的函数表达式;

(2)如图2;若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线与边AB交于点P且同时与边CD交于点Q.设点A的坐标为(m,n)

①当PO=PF时;分别求出点P和点Q的坐标及PF所在直线l的函数解析式;

②当n=2时;若P为AB边中点,请求出m的值;

(3)若点B在第(2)①中的PF所在直线l上运动;且正方形ABCD与抛物线有两个交点,请直接写出m的取值范围.

31、如图,△ABC中,AB=5,BC=6,BD=BC;AD⊥BC于D,E为AB延长线上的一点,且EC交AD的延长线于F.

(1)设BE为x;DF为y,试用x的式子表示y.

(2)当∠ACE=90°时,求此时x的值.32、(2012•镇海区校级自主招生)如图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A,B,C三点的拋物线对应的函数关系式是____.参考答案一、选择题(共5题,共10分)1、C【分析】

sin210°=sin(180°+30°)=-sin30°=-

故选C.

【解析】【答案】利用诱导公式可得sin210°=sin(180°+30°)=-sin30°;化简得出结果.

2、A【分析】【解析】试题分析:令=t,即ty-x-4t+2=0,表示一条直线,又方程化为表示圆心为(1,1)半径为1的圆,由题意直线与圆有公共点,∴圆心(1,1)到直线ty-x-4t+2=0的距离∴∴又t≠0,故即的取值范围为,故选A考点:本题考查了直线与圆的位置关系【解析】【答案】A3、D【分析】【解析】本题考查较好的含义;运算及函数的定义域和值域的求法.

集合表示函数的定义域,其定义域为集合表示函数的值域,此二次函数满足则故选D【解析】【答案】D4、C【分析】【解答】解:“限高4.5米”的意义为“h≤4.5”;故选:C.

【分析】理解“限高”的含义是“≤”即可得出.5、C【分析】【解答】选项A中,由于二倍角正弦公式可知,

选项B中,根据二倍角的余弦公式可知

选项C中,由于二倍角的余弦公式符合题意;

选项D中,利用同角平方关系可知结论为=1;故选C.

【分析】熟练的掌握二倍角公式和同角公式,能结合特殊角的三角函数值来求解表达式的值,先化简后求解,这是三角求值的一般思路。,属于基础题。二、填空题(共9题,共18分)6、略

【分析】

∵a>b①;

不等式①两边同乘以3,可得3a>3b;

不等式①两边同加上2;可得。

a+2>b+2;

不等式①两边同乘以-5;不等式方向改变;

∴-5a<-5b;

故答案为:>;>;<;

【解析】【答案】根据不等式的性质进行求解;不等式两边同乘以一个正数或同加上一个数不等式方向不变,同乘以一个负数不等号方向要改变;

7、略

【分析】

当x∈[6;8]时,x-6>0,x-8<0;

所以+=|x-6|+|x-8|=x-6+8-x=2;

故答案为:2

【解析】【答案】当x∈[6;8]时,x-6>0,x-8<0,利用根式的性质求出代数式的值.

8、略

【分析】试题分析:当时,有将两式相加得:令从而那么考点:1.分段函数;2.函数的周期.【解析】【答案】19、略

【分析】【解析】试题分析:考点:三角函数的和角的正切公式【解析】【答案】10、略

【分析】【解析】

设偶数项和为32k,则奇数项和为27k,由32k+27k=59k=354可得k=6,故公差d=(32k-27k)/6=5k/6=5,故答案为:5.【解析】【答案】11、略

【分析】【解析】

试题分析:∵直线(其中为非零实数)与圆相交于两点,O为坐标原点,且为直角三角形,∴∴圆心O(0,0)到直线的距离化为

当且仅当取等号,∴的最小值为4.

考点:基本不等式.【解析】【答案】412、略

【分析】【解析】2a+4b+3=(2a+4b+3)·=[(2a+b)+3(b+1)]·=1+++3≥4+2所以a+2b≥【解析】【答案】13、略

【分析】【解析】略【解析】【答案】014、略

【分析】解:∵logab+logba=(a>b>1);

∴logab+=

设t=logab;

∵a>b>1;

∴0<t<1;

则条件等价为t+-=0;

即t2-t+1=0,2t2-5t+2=0;

解得t=2(舍)或t=

即logab=即b==

则=

故答案为:1

根据条件求出a,b的关系即可得到结论.

本题主要考查对数和指数幂的运算和化简,根据一元二次方程求出a,b的关系是解决本题的关键.【解析】1三、证明题(共6题,共12分)15、略

【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;

(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

则=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四点共圆;

∴∠CFD=∠CAD.

(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四点共圆;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.16、略

【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.

(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】

证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;

则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.

(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.17、略

【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE

OA=OE=>∠OAE=∠OEA

DE切圆O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

⇒OE∥AD

=>E为的中点.

(2)解:连CE;则∠AEC=90°,设圆O的半径为x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圆O于E=>△FCE∽△FEA

∴,

即DE•EF=AD•CF

DE•EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC•FA=3x(3+2)=15

∴EF=18、略

【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;

则AC=AE;AB=5DE;

又∵G是AB的中点;

∴AG=ED.

∴ED2=AF•AE;

∴5ED2=AF•AE;

∴AB•ED=AF•AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.19、略

【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四边形GBFC是平行四边形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵过A;G的圆与BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四点共圆;

∴GA;GF=GC•GD;

即GA2=GC•GD.20、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.四、作图题(共4题,共8分)21、略

【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.

∵点A与点A′关于CD对称;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:铺设管道的最省费用为10000元.22、解:程序框图如下:

【分析】【分析】根据题意,设计的程序框图时需要分别设置一个累加变量S和一个计数变量i,以及判断项数的判断框.23、解:程序框图如下:

【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.24、解:由题意作示意图如下;

【分析】【分析】由题意作示意图。五、计算题(共4题,共32分)25、略

【分析】【分析】根据正方形的性质可知三角形BDC为等腰直角三角形,由正方形的边长为2,表示出三角形BDC的面积,四边形CDFE为直角梯形,上底下底分别为小大正方形的边长,高为小正方形的边长,利用梯形的面积公式表示出梯形CDFE的面积,而三角形BEF为直角三角形,直角边为小正方形的边长及大小边长之和,利用三角形的面积公式表示出三角形BEF的面积,发现四边形CDEF的面积与三角形EFB的面积相等,所求△BDF的面积等于三角形BDC的面积加上四边形CDFE的面积减去△EFB的面积即为三角形BDC的面积,进而得到所求的面积.【解析】【解答】解:∵四边形ABCD是正方形;边长为2;

∴BC=DC=2;且△BCD为等腰直角三角形;

∴△BDC的面积=BC•CD=×2×2=2;

又∵正方形CEFG;及正方形ABCD;

∴EF=CE;BC=CD;

由四边形CDFE的面积是(EF+CD)•EC,△EFB的面积是(BC+CE)•EF;

∴四边形CDFE的面积=△EFB的面积;

∴△BDF的面积=△BDC的面积+四边形CDFE的面积-△EFB的面积=△BDC的面积=2.

故答案为:2.26、略

【分析】【分析】①+②得到一个关于x的方程,求出x,①-②得到一个关于y的方程,求出y即可.【解析】【解答】解:;

①+②得:2x=6;

∴x=3;

①-②得:2y=8;

∴y=4;

∴方程组的解是.27、略

【分析】【分析】作△ABC的内切圆,分别切AB、BC、CA于D、E、F,圆心为O,连接OA、OB、OC、OD、OE、OF,求出AD、BE、CF,根据锐角三角函数求出r,代入求出即可.【解析】【解答】解:作△ABC的内切圆;分别切AB;BC、CA于D、E、F,圆心为O;

连接OA;OB、OC、OD、OE、OF;

∴AD=AF;BD=BE,CF=CE;

c-AD+n-AD=a;

∴AD=;

同理:BE=,CE=;

在Rt△OCE中,cot60°=;

得r=;

所以.

答:2cot-cot的值是.28、略

【分析】【分析】要求DE,求AE,AD即可:求证△ABD≌△ACE,即可得AD=CE,直角△AEC中根据AE=得AE,根据DE=AE-AD即可解题.【解析】【解答】解:在直角△AEC中;∠AEC=90°;

AC=15,CE=9,则AE==12;

∵∠BAD+∠CAD=90°;∠ABD+∠BAD=90°;

∴∠ABD=∠CAE;

△ABD≌△CAE;

∴AD=CE=9;

∴DE=AE-AD=AE-AD=3.

故答案为3.六、综合题(共4题,共24分)29、略

【分析】【分析】(1)由AB是直径;AM;BN是切线,得到AM⊥AB,BN⊥AB,根据垂直于同一条直线的两直线平行即可得到结论;

(2)过点D作DF⊥BC于F;则AB∥DF,由(1)AM∥BN,得到四边形ABFD为矩形,于是得到DF=AB=2,BF=AD=x,根据切线长定理得DE=DA=x,CE=CB=y.根据勾股定理即可得到结果;

(3)根据梯形的面积公式即可得到结论.【解析】【解答】(1)证明:∵AB是直径;AM;BN是切线;

∴AM⊥AB;BN⊥AB;

∴AM∥BN;

(2)解:过点D作DF⊥BC于F;则AB∥DF;

由(1)AM∥BN;

∴四边形ABFD为矩形;

∴DF=AB=2;BF=AD=x;

∵DE;DA;CE、CB都是切线;

∴根据切线长定理;得DE=DA=x,CE=CB=y.

在Rt△DFC中;DF=2,DC=DE+CE=x+y,CF=BC-BF=y-x;

∴(x+y)2=22+(y-x)2;

化简,得.

(3)解:由(1)、(2)得,四边形的面积;

即.30、略

【分析】【分析】(1)已知抛物线的对称轴是y轴;顶点是(0,4),经过点(4,0),利用待定系数法即可求得函数的解析式;

(2)①过点P作PG⊥x轴于点G;根据三线合一定理可以求得G的坐标,则P点的横坐标可以求得,把P的横坐标代入抛物线的解析式,即可求得纵坐标,得到P的坐标,再根据正方形的边长是4,即可求得Q的纵坐标,代入抛物线的解析式即可求得Q的坐标,然后利用待定系数法即可求得直线PF的解析式;

②已知n=2;即A的纵坐标是2,则P的纵坐标一定是2,把y=2代入抛物线的解析式即可求得P的横坐标,根据AP=2,且AP∥y轴,即可得到A的横坐标,从而求得m的值;

(3)假设B在M点时,C在抛物线上或假设当B点在N点时,D点同时在抛物线上时,求得两个临界点,当B在MP和FN之间移动时,抛物线与正方形有两个交点.【解析】【解答】解:(1)由抛物线y=ax2+c经过点E(0;4),F(4,0)

,解得;

∴y=-x2+4;

(2)①过点P作PG⊥x轴于点G;

∵PO=PF∴OG=FG

∵F(4;0)∴OF=4

∴OG=OF=×4=2;即点P的横坐标为2

∵点P在抛物线上。

∴y=-×22+4=3;即P点的纵坐标为3

∴P(2;3)

∵点P的纵坐标为3;正方形ABCD边长是4,∴点Q的纵坐标为-1

∵点Q在抛物线上,∴-1=-x2+4

∴x1=2,x2=-2(不符题意;舍去)

∴Q(2;-1)

设直线PF的解析式是y=kx+b;

根据题意得:;

解得:,

则直线的解析式是:y=-x+6;

②当n=2时;则点P的纵坐标为2

∵P在抛物线上,∴2=-x2+4

∴x1=2,x2=-2

∴P的坐标为(2,2)或(-2;2)

∵P为AB中点∴AP=2

∴A的坐标为(2-2,2)或(-2-2;2)

∴m的值为2-2或-2-2;

(3)假设B在M点时;C在抛物线上,A的横坐标是m,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论