2022届高考物理一轮复习学案-圆周运动的临界问题-_第1页
2022届高考物理一轮复习学案-圆周运动的临界问题-_第2页
2022届高考物理一轮复习学案-圆周运动的临界问题-_第3页
2022届高考物理一轮复习学案-圆周运动的临界问题-_第4页
2022届高考物理一轮复习学案-圆周运动的临界问题-_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆周运动的临界问题题型一水平面内圆周运动的临界问题例1(2018·浙江11月选考·9)如图所示,一质量为2.0×103kg的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为1.4×104N,当汽车经过半径为80m的弯道时,下列判断正确的是()A.汽车转弯时所受的力有重力、弹力、摩擦力和向心力B.汽车转弯的速度为20m/s时所需的向心力为1.4×104NC.汽车转弯的速度为20m/s时汽车会发生侧滑D.汽车能安全转弯的向心加速度不超过7.0m/s2例2(多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=eq\r(\f(kg,2l))是b开始滑动的临界角速度D.当ω=eq\r(\f(2kg,3l))时,a所受摩擦力的大小为kmg例3(多选)如图所示,三角形为一光滑锥体的正视图,锥面与竖直方向的夹角为θ=37°.一根长为l=1m的细线一端系在锥体顶端,另一端系着一可视为质点的小球,小球在水平面内绕锥体的轴做匀速圆周运动,重力加速度g=10m/s2,sin37°=0.6,不计空气阻力,则()A.小球受重力、支持力、拉力和向心力B.小球可能只受拉力和重力C.当ω0=eq\f(5,2)eq\r(2)rad/s时,小球对锥体的压力刚好为零D.当ω=2eq\r(5)rad/s时,小球受重力、支持力和拉力作用例4如图所示,两段长均为L的轻质线共同系住一个质量为m的小球,另一端分别固定在等高的A、B两点,A、B两点间距也为L,今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v,两段线中张力恰好均为零,若小球到达最高点时速率为2v,则此时每段线中张力大小为(重力加速度为g)()A.eq\r(3)mg B.2eq\r(3)mgC.3mg D.4mg例5如图所示,质量为m的小球由轻绳a和b分别系于一轻质细杆的B点和A点,绳a长为L,与水平方向成θ角时绳b恰好在水平方向伸直.当轻杆绕轴AB以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,a、b绳均拉直.重力加速度为g,则()A.a绳的拉力可能为零B.a绳的拉力随角速度的增大而增大C.当角速度ω>eq\r(\f(g,Lsinθ))时,b绳中拉力不为零D.当角速度ω>eq\r(\f(g,Lsinθ))时,若a绳突然被剪断,则b绳仍可保持水平例6(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的水平细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是(重力加速度为g)()A.当ω>eq\r(\f(2Kg,3L))时,A、B会相对于转盘滑动B.当ω>eq\r(\f(Kg,2L)),绳子一定有弹力C.ω在eq\r(\f(Kg,2L))<ω<eq\r(\f(2Kg,3L))范围内增大时,B所受摩擦力变大D.ω在0<ω<eq\r(\f(2Kg,3L))范围内增大时,A所受摩擦力一直变大题型二竖直面内圆周运动的临界问题例1如图所示,一小球以一定的初速度从图示位置进入光滑的轨道,小球先进入圆轨道1,再进入圆轨道2,圆轨道1的半径为R,圆轨道2的半径是轨道1的1.8倍,小球的质量为m,若小球恰好能通过轨道2的最高点B,则小球在轨道1上经过其最高点A时对轨道的压力大小为(重力加速度为g)()A.2mgB.3mgC.4mgD.5mg例2(2022·山东枣庄八中月考)如图,轻杆长2l,中点装在水平轴O上,两端分别固定着小球A和B,A球质量为m,B球质量为2m,重力加速度为g,两者一起在竖直平面内绕O轴做圆周运动.(1)若A球在最高点时,杆的A端恰好不受力,求此时B球的速度大小;(2)若B球到最高点时的速度等于第(1)问中的速度,求此时O轴的受力大小、方向;(3)在杆的转速逐渐变化的过程中,能否出现O轴不受力的情况?若不能,请说明理由;若能,求出此时A、B球的速度大小.题型三斜面上圆周运动的临界问题例1(多选)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴2.5m处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为eq\f(\r(3),2),设最大静摩擦力等于滑动摩擦力,盘面与水平面的夹角为30°,g取10m/s2,则以下说法中正确的是()A.小物体随圆盘做匀速圆周运动时,一定始终受到三个力的作用B.小物体随圆盘以不同的角速度ω做匀速圆周运动时,ω越大时,小物体在最高点处受到的摩擦力一定越大C.小物体受到的摩擦力可能背离圆心D.ω的最大值是1.0rad/s【例2】如图所示,在倾角为α=30°的光滑斜面上,有一长L=0.8m的细绳,一端固定在O点,另一端拴一质量为0.2kg的小球,使小球在斜面上做圆周运动,求:小球通过最高点A时的最小速度为多大;题型四:非匀变速圆周脱离轨道模型例1(多选)如图所示,竖直平面内有一半径为R=0.35m的内壁光滑的圆形轨道,轨道底端与光滑水平面相切,一小球(可视为质点)以v0=3.5m/s的初速度进入轨道,g=10m/s2,则()A.小球不会脱离圆轨道运动B.小球会脱离圆轨道运动C.小球脱离轨道时的速度为eq\f(\r(7),2)m/sD.小球脱离轨道的位置与圆心连线和水平方向间的夹角为30°题型一水平面内圆周运动的临界问题例1答案D解析汽车转弯时所受的力有重力、弹力、摩擦力,向心力是由摩擦力提供的,A错误;汽车转弯的速度为20m/s时,根据Fn=meq\f(v2,R),得所需的向心力为1.0×104N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C错误;汽车安全转弯时的最大向心加速度为am=eq\f(Ff,m)=7.0m/s2,D正确.例2答案AC解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即Ff=mω2R.当角速度增大时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:Ffa=mωa2l,当Ffa=kmg时,kmg=mωa2l,ωa=eq\r(\f(kg,l));对木块b:Ffb=mωb2·2l,当Ffb=kmg时,kmg=mωb2·2l,ωb=eq\r(\f(kg,2l)),eq\r(\f(kg,2l))是b开始滑动的临界角速度,所以b先达到最大静摩擦力,即b比a先开始滑动,选项A、C正确;两木块滑动前转动的角速度相同,则Ffa=mω2l,则Ffb=mω2·2l,Ffa<Ffb,选项B错误;ω=eq\r(\f(2kg,3l))<ωa=eq\r(\f(kg,l)),a没有滑动,则Ffa′=mω2l=eq\f(2,3)kmg,选项D错误.例3答案BC解析随着转速的增加,FT增大,FN减小,当转速达到ω0时支持力为零,支持力恰好为零时有mgtanθ=mω02lsinθ,解得ω0=eq\f(5,2)eq\r(2)rad/s,A错误,B、C正确;当ω=2eq\r(5)rad/s时,小球已经离开斜面,小球受重力、拉力的作用,D错误.例4解析当小球到达最高点速率为v时,两段线中张力均为零,有mg=meq\f(v2,r),当小球到达最高点速率为2v时,应有F+mg=meq\f(2v2,r),所以F=3mg,此时小球在最高点受力如图所示,所以FT=eq\r(3)mg,A正确.例5答案C解析小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a绳在竖直方向上的分力与小球重力相等,可知a绳的拉力不可能为零,A错误;根据竖直方向上受力平衡得Fasinθ=mg,解得Fa=eq\f(mg,sinθ),可知a绳的拉力不变,与角速度无关,B错误;当b绳拉力为零时,有eq\f(mg,tanθ)=mω2Lcosθ,解得ω=eq\r(\f(g,Lsinθ)),可知当角速度ω>eq\r(\f(g,Lsinθ))时,b绳出现拉力,C正确;若a绳突然被剪断,则b绳不能保持水平,D错误.例6答案ABD解析当A、B所受摩擦力均达到最大值时,A、B相对转盘即将滑动,则有Kmg+Kmg=mω2L+mω2·2L,解得:ω=eq\r(\f(2Kg,3L)),A项正确;当B所受静摩擦力达到最大值后,绳子开始有弹力,即有:Kmg=m·2L·ω2,解得ω=eq\r(\f(Kg,2L)),可知当ω>eq\r(\f(Kg,2L))时,绳子有弹力,B项正确;当ω>eq\r(\f(Kg,2L))时,B已达到最大静摩擦力,则ω在eq\r(\f(Kg,2L))<ω<eq\r(\f(2Kg,3L))范围内增大时,B受到的摩擦力不变,C项错误;ω在0<ω<eq\r(\f(2Kg,3L))范围内,A相对转盘是静止的,A所受摩擦力为静摩擦力,所以由Ff-FT=mLω2可知,当ω增大时,静摩擦力也增大,D项正确.题型二竖直面内圆周运动的临界问题例1答案C解析小球恰好能通过轨道2的最高点B时,有mg=eq\f(mvB2,1.8R),小球在轨道1上经过其最高点A时,有FN+mg=eq\f(mvA2,R),根据机械能守恒定律,有1.6mgR=eq\f(1,2)mvA2-eq\f(1,2)mvB2,解得FN=4mg,结合牛顿第三定律可知,小球在轨道1上经过其最高点A时对轨道的压力大小为4mg,C正确.例2答案(1)eq\r(gl)(2)2mg,方向竖直向下(3)能;当A、B球的速度大小为eq\r(3gl)时O轴不受力解析(1)A在最高点时,对A根据牛顿第二定律得mg=meq\f(vA2,l)解得vA=eq\r(gl)因为A、B球的角速度相等,半径相等,则vB=vA=eq\r(gl)(2)B在最高点时,对B根据牛顿第二定律得2mg+FTOB′=2meq\f(vB2,l)代入(1)中的vB,可得FTOB′=0对A有FTOA′-mg=meq\f(vA2,l)可得FTOA′=2mg根据牛顿第三定律,O轴所受的力的大小为2mg,方向竖直向下(3)要使O轴不受力,根据B的质量大于A的质量,设A、B的速度为v,可判断B球应在最高点对B有FTOB″+2mg=2meq\f(v2,l)对A有FTOA″-mg=meq\f(v2,l)轴O不受力时FTOA″=FTOB″可得v=eq\r(3gl)所以当A、B球的速度大小为eq\r(3gl)时O轴不受力.题型三斜面上圆周运动的临界问题例1答案CD解析当物体在最高点时,可能只受到重力与支持力2个力的作用,合力提供向心力,故A错误;当物体在最高点时,可能只受到重力与支持力2个力的作用,也可能受到重力、支持力与摩擦力三个力的作用,摩擦力的方向可能沿斜面向上,也可能沿斜面向下,摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受到的摩擦力越小,故B错误;当物体在最高点时,摩擦力的方向可能沿斜面向上,也可能沿斜面向下,即可能指向圆心,也可能背离圆心,故C正确;当物体转到圆盘的最低点恰好不滑动时,转盘的角速度最大,此时小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向圆心的摩擦力,由沿斜面的合力提供向心力,支持力FN=mgcosθ,摩擦力Ff=μFN=μmgcosθ,又μmgcos30°-mgsin30°=mω2R,解得ω=1.0rad/s,故D正确.例2解:小球恰好能在斜面上做完整的圆周运动时,有最小速度,此时小球通过A点时细线的拉力为零,根据圆周运动和牛顿第二定律有:解得:=2m/s

题型四:非匀变速圆周脱离轨道模型例1答案BCD解析若小球恰能到达最高点,由重力提供向心力,则有:mg=meq\f(v2,R),解得:v=eq\r(gR)=eq\r(3.5)m/s,若小球从最低点恰好能到最高点,根据机械能守恒定律得:eq\f(1,2)mv0′2=mg·2R+eq\f(1,2)mv2,解得:v0′=eq\f(\r(70),2)m/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论