二次函数应用题_第1页
二次函数应用题_第2页
二次函数应用题_第3页
二次函数应用题_第4页
二次函数应用题_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

...wd......wd......wd...二次函数1.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,商品的进价为每件40元,假设何定价才能使利润最大2.小华的爸爸在国际商贸城开专卖店专销某种品牌的计算器,进价12元∕只,售价20元∕只.为了促销,专卖店决定但凡买10只以上的,每多买一只,售价就降低0.10元〔例如:某人买20只计算器,于是每只降价0.10×〔20-10〕=1元,就可以按19元∕只的价格购置〕,但是最低价为16元∕只.

〔1〕顾客一次至少买多少只,才能以最低价购置

〔2〕写出当一次购置x只时〔x>10〕,利润y〔元〕与购置量x〔只〕之间的函数关系式.

〔3〕星期天,小华来到专卖店勤工俭学,上午做成了两笔生意,一是向顾客甲卖了46只,二是向顾客乙卖了50只,记账时小华发现卖50只反而比卖46只赚的人民币少.为了使每次卖得越多赚人民币越多,在其他促销条件不变的情况下,最低价16元∕只至少要提高到多少为什么3.恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.

〔1〕假设存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.

〔2〕李经理想获得利润22500元,需将这批香菇存放多少天后出售〔利润=销售总金额-收购本钱-各种费用〕

〔3〕李经理将这批香菇存放多少天后出售可获得最大利润最大利润是多少4.某服装公司试销一种本钱为每件50元的T恤衫,规定试销时的销售单价不低于本钱价,又不高于每件70元,试销中销售量〔件〕与销售单价〔元〕的关系可以近似的看作一次函数〔如图〕.〔1〕求与之间的函数关系式;〔2〕设公司获得的总利润〔总利润=总销售额总本钱〕为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大最大值是多少4004003006070Oy(件)x(元)5.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购置彩电的农户实行政府补贴.规定每购置一台彩电,政府补贴假设干元,经调查某商场销售彩电台数〔台〕与补贴款额〔元〕之间大致满足如图①所示的一次函数关系.随着补贴款额的不断增大,销售量也不断增加,但每台彩电的收益〔元〕会相应降低且与之间也大致满足如图②所示的一次函数关系.120012008000400y(台)x(元)z(元)x(元)2001602000图①图②〔1〕在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元〔2〕在政府补贴政策实施后,分别求出该商场销售彩电台数和每台家电的收益与政府补贴款额之间的函数关系式;〔3〕要使该商场销售彩电的总收益〔元〕最大,政府应将每台补贴款额定为多少并求出总收益的最大值.6.某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y〔元/千克〕与采购量x〔千克〕之间的函数关系图象如图中折线AB--BC--CD所示〔不包括端点A〕.

〔1〕当100<x<200时,直接写y与x之间的函数关系式:〔2〕蔬菜的种植本钱为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元

〔3〕在〔2〕的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润7.某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,假设在国内市场销售,平均每件产品的利润y1〔元〕与国内销售数量x〔千件〕的关系为:假设在国外销售,平均每件产品的利润y2〔元〕与国外的销售数量t〔千件〕的关系为:〔1〕用x的代数式表示t为:t=;当0<x≤4时,y2与x的函数关系为y2=;当4≤x<时,y2=100;〔2〕求每年该公司销售这种健身产品的总利润w〔千元〕与国内的销售数量x〔千件〕的函数关系式,并指出x的取值范围;〔3〕该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大最大值为多少8.某公司营销A、B两种产品,根据市场调研,发现如下信息:

信息1:销售A种产品所获利润y〔万元〕与销售产品x〔吨〕之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.

信息2:销售B种产品所获利润y〔万元〕与销售产品x〔吨〕之间存在正比例函数关系y=0.3x.

根据以上信息,解答以下问题;

〔1〕求二次函数解析式;

〔2〕该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少9.“绿色出行,低碳健身〞已成为广阔市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数〔称为存量〕情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y〔辆〕与x〔x为整数〕满足如以以下列图的一个二次函数关系.时段x还车数〔辆〕借车数〔辆〕存量y〔辆〕6:00﹣7:0014551007:00﹣8:0024311n……………根据所给图表信息,解决以下问题:〔1〕m=,解释m的实际意义:;〔2〕求整点时刻的自行车存量y与x之间满足的二次函数关系式;〔3〕9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.10.“健益〞超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经历知,每天销售量(千克)与销售单价(元)(〕存在如以以以下列图所示的一次函数关系式.⑴试求出与的函数关系式;⑵设“健益〞超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润最大利润是多少⑶根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价的范围(直接写出答案).11.每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进展销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.

〔1〕水果商要把荔枝售价至少定为多少才不会赔本

〔2〕在销售过程中,水果商发现每天荔枝的销售量m〔千克〕与销售单价x〔元/千克〕之间满足关系:m=-10x+120,那么当销售单价定为多少时,每天获得的利润w最大12.某电子厂商投产一种新型电子产品,每件制造本钱为18元,试销过程中发现,每月销售量y〔万件〕与销售单价x〔元〕之间的关系可以近似地看作一次函数y=-2x+100.〔利润=售价-制造本钱〕

〔1〕写出每月的利润z〔万元〕与销售单价x〔元〕之间的函数关系式;

〔2〕当销售单价为多少元时,厂商每月能获得350万元的利润当销售单价为多少元时,厂商每月能获得最大利润最大利润是多少

〔3〕根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造本钱需要多少万元13.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如以以以下列图的二次函数图象〔局部〕刻画了该公司年初以来累积利润y〔万元〕与销售时间x〔月〕之间的关系〔即前x个月的利润之和y与x之间的关系〕.

〔1〕根据图上信息,求累积利润y〔万元〕与销售时间x〔月〕的函数关系式;

〔2〕求截止到几月末公司累积利润可到达30万元

〔3〕求第8个月公司所获利润是多少万元14.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和本钱进展了调研,结果如下:每件商品的售价M〔元〕与时间t〔月〕的关系可用一条线段上的点来表示〔如图1〕,每件商品的本钱Q〔元〕与时间t〔月〕的关系可用一条抛物线的一局部上的点来表示〔如图2〕.

〔说明:图1,图2中的每个实心黑点所对应的纵坐标分别指相应月份的售价和本钱.〕

请你根据图象提供的信息答复:

〔1〕每件商品在3月份出售时的利润〔利润=售价-本钱〕是多少元

〔2〕求图2中表示的每件商品的本钱Q〔元〕与时间t〔月〕之间的函数关系式〔不要求写自变量的取值范围〕;

〔3〕你能求出三月份至七月份每件商品的利润W〔元〕与时间t〔月〕之间的函数关系式吗〔请写出计算过程,不要求写自变量的取值范围〕假设该公司共有此种商品30000件,准备在一个月内全部售完,请你计算一下至少可获利多少元

15.如图,排球运发动站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y〔m〕与运行的水平距离x(m)满足关系式y=a(x-6)2+h.球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。〔1〕当h=2.6时,求y与x的关系式〔不要求写出自变量x的取值范围〕〔2〕当h=2.6时,球能否越过球网球会不会出界请说明理由;〔3〕假设球一定能越过球网,又不出边界,求h的取值范围。16.为了改善市民的生活环境,我是在某河滨空地处修建一个如以以下列图的休闲文化广场.在Rt△内修建矩形水池,使顶点在斜边上,分别在直角边上;又分别以为直径作半圆,它们交出两弯新月〔图中阴影局部〕,两弯新月局部栽植花草;其余空地铺设地砖.其中,.设米,米.〔1〕求与之间的函数解析式;〔2〕当为何值时,矩形的面积最大最大面积是多少〔3〕求两弯新月〔图中阴影局部〕的面积,并求当为何值时,矩形的面积等于两弯新月面积的17.我市某海域内有一艘轮船发生故障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障渔船会合后立即将其拖回.如图折线段O-A-B表示救援船在整个航行过程中离港口的距离y〔海里〕随航行时间x〔分钟〕的变化规律.抛物线y=ax2+k表示故障渔船在漂移过程中离港口的距离y〔海里〕随漂移时间x〔分钟〕的变化规律.救援船返程速度是前往速度的.根据图象提供的信息,解答以下问题:

〔1〕救援船行驶了海里与故障船会合;

〔2〕求该救援船的前往速度;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论