下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页景德镇陶瓷职业技术学院《深度学习理论与实践》
2023-2024学年第二学期期末试卷题号一二三四总分得分一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在机器学习中,交叉验证是一种常用的评估模型性能和选择超参数的方法。假设我们正在使用K折交叉验证来评估一个分类模型。以下关于交叉验证的描述,哪一项是不准确的?()A.将数据集随机分成K个大小相等的子集,依次选择其中一个子集作为测试集,其余子集作为训练集B.通过计算K次实验的平均准确率等指标来评估模型的性能C.可以在交叉验证过程中同时调整多个超参数,找到最优的超参数组合D.交叉验证只适用于小数据集,对于大数据集计算成本过高,不适用2、在机器学习中,偏差-方差权衡(Bias-VarianceTradeoff)描述的是()A.模型的复杂度与性能的关系B.训练误差与测试误差的关系C.过拟合与欠拟合的关系D.以上都是3、某机器学习模型在训练过程中,损失函数的值一直没有明显下降。以下哪种可能是导致这种情况的原因?()A.学习率过高B.模型过于复杂C.数据预处理不当D.以上原因都有可能4、想象一个语音合成的任务,需要生成自然流畅的语音。以下哪种技术可能是核心的?()A.基于规则的语音合成,方法简单但不够自然B.拼接式语音合成,利用预先录制的语音片段拼接,但可能存在不连贯问题C.参数式语音合成,通过模型生成声学参数再转换为语音,但音质可能受限D.端到端的神经语音合成,直接从文本生成语音,效果自然但训练难度大5、在机器学习中,模型评估是非常重要的环节。以下关于模型评估的说法中,错误的是:常用的模型评估指标有准确率、精确率、召回率、F1值等。可以通过交叉验证等方法来评估模型的性能。那么,下列关于模型评估的说法错误的是()A.准确率是指模型正确预测的样本数占总样本数的比例B.精确率是指模型预测为正类的样本中真正为正类的比例C.召回率是指真正为正类的样本中被模型预测为正类的比例D.模型的评估指标越高越好,不需要考虑具体的应用场景6、考虑一个回归问题,我们使用均方误差(MSE)作为损失函数。如果模型的预测值与真实值之间的MSE较大,这意味着什么()A.模型的预测非常准确B.模型存在过拟合C.模型存在欠拟合D.无法确定模型的性能7、假设正在进行一项关于客户购买行为预测的研究。我们拥有大量的客户数据,包括个人信息、购买历史和浏览记录等。为了从这些数据中提取有价值的特征,以下哪种方法通常被广泛应用?()A.主成分分析(PCA)B.线性判别分析(LDA)C.因子分析D.独立成分分析(ICA)8、在机器学习中,特征选择是一项重要的任务,旨在从众多的原始特征中选择出对模型性能有显著影响的特征。假设我们有一个包含大量特征的数据集,在进行特征选择时,以下哪种方法通常不被采用?()A.基于相关性分析,选择与目标变量高度相关的特征B.随机选择一部分特征,进行试验和比较C.使用递归特征消除(RFE)方法,逐步筛选特征D.基于领域知识和经验,手动选择特征9、在一个信用评估的问题中,需要根据个人的信用记录、收入、债务等信息评估其信用风险。以下哪种模型评估指标可能是最重要的?()A.准确率(Accuracy),衡量正确分类的比例,但在不平衡数据集中可能不准确B.召回率(Recall),关注正例的识别能力,但可能导致误判增加C.F1分数,综合考虑准确率和召回率,但对不同类别的权重相同D.受试者工作特征曲线下面积(AUC-ROC),能够评估模型在不同阈值下的性能,对不平衡数据较稳健10、在一个情感分析任务中,需要同时考虑文本的语义和语法信息。以下哪种模型结构可能是最有帮助的?()A.卷积神经网络(CNN),能够提取局部特征,但对序列信息处理较弱B.循环神经网络(RNN),擅长处理序列数据,但长期依赖问题较严重C.长短时记忆网络(LSTM),改进了RNN的长期记忆能力,但计算复杂度较高D.结合CNN和LSTM的混合模型,充分利用两者的优势11、在进行模型融合时,以下关于模型融合的方法和作用,哪一项是不准确的?()A.可以通过平均多个模型的预测结果来进行融合,降低模型的方差B.堆叠(Stacking)是一种将多个模型的预测结果作为输入,训练一个新的模型进行融合的方法C.模型融合可以结合不同模型的优点,提高整体的预测性能D.模型融合总是能显著提高模型的性能,无论各个模型的性能如何12、某研究团队正在开发一个用于疾病预测的机器学习模型,需要考虑模型的鲁棒性和稳定性。以下哪种方法可以用于评估模型在不同数据集和条件下的性能?()A.交叉验证B.留一法C.自助法D.以上方法都可以13、在构建一个用于图像识别的卷积神经网络(CNN)时,需要考虑许多因素。假设我们正在设计一个用于识别手写数字的CNN模型。以下关于CNN设计的描述,哪一项是不正确的?()A.增加卷积层的数量可以提取更复杂的图像特征,提高识别准确率B.较大的卷积核尺寸能够捕捉更广泛的图像信息,有助于模型性能提升C.在卷积层后添加池化层可以减少特征数量,降低计算复杂度,同时保持主要特征D.使用合适的激活函数如ReLU可以引入非线性,增强模型的表达能力14、某机器学习项目需要对文本进行主题建模,以发现文本中的潜在主题。以下哪种方法常用于文本主题建模?()A.潜在狄利克雷分配(LDA)B.非负矩阵分解(NMF)C.概率潜在语义分析(PLSA)D.以上方法都常用15、机器学习中,批量归一化(BatchNormalization)的主要作用是()A.加快训练速度B.防止过拟合C.提高模型精度D.以上都是16、无监督学习算法主要包括聚类和降维等方法。以下关于无监督学习算法的说法中,错误的是:聚类算法将数据分成不同的组,而降维算法则将高维数据映射到低维空间。那么,下列关于无监督学习算法的说法错误的是()A.K均值聚类算法需要预先指定聚类的个数K,并且对初始值比较敏感B.层次聚类算法可以生成树形结构的聚类结果,便于直观理解C.主成分分析是一种常用的降维算法,可以保留数据的主要特征D.无监督学习算法不需要任何先验知识,完全由数据本身驱动17、在一个图像生成任务中,例如生成逼真的人脸图像,生成对抗网络(GAN)是一种常用的方法。GAN由生成器和判别器组成,它们在训练过程中相互对抗。以下关于GAN训练过程的描述,哪一项是不正确的?()A.生成器的目标是生成尽可能逼真的图像,以欺骗判别器B.判别器的目标是准确区分真实图像和生成器生成的图像C.训练初期,生成器和判别器的性能都比较差,生成的图像质量较低D.随着训练的进行,判别器的性能逐渐下降,而生成器的性能不断提升18、在一个气候预测的研究中,需要根据历史的气象数据,包括温度、湿度、气压等,来预测未来一段时间的天气状况。数据具有季节性、周期性和长期趋势等特征。以下哪种预测方法可能是最有效的?()A.简单的线性时间序列模型,如自回归移动平均(ARMA)模型,适用于平稳数据,但对复杂模式的捕捉能力有限B.季节性自回归整合移动平均(SARIMA)模型,考虑了季节性因素,但对于非线性和突变的情况处理能力不足C.基于深度学习的长短期记忆网络(LSTM)与门控循环单元(GRU),能够处理长序列和复杂的非线性关系,但需要大量数据和计算资源D.结合多种传统时间序列模型和机器学习算法的集成方法,综合各自的优势,但模型复杂度和调参难度较高19、假设要开发一个疾病诊断的辅助系统,能够根据患者的医学影像(如X光、CT等)和临床数据做出诊断建议。以下哪种模型融合策略可能是最有效的?()A.简单平均多个模型的预测结果,计算简单,但可能无法充分利用各个模型的优势B.基于加权平均的融合,根据模型的性能或重要性分配权重,但权重的确定可能具有主观性C.采用堆叠(Stacking)方法,将多个模型的输出作为新的特征输入到一个元模型中进行融合,但可能存在过拟合风险D.基于注意力机制的融合,动态地根据输入数据为不同模型分配权重,能够更好地适应不同情况,但实现较复杂20、某研究团队正在开发一个用于预测股票价格的机器学习模型,需要考虑市场的动态性和不确定性。以下哪种模型可能更适合处理这种复杂的时间序列数据?()A.长短时记忆网络(LSTM)结合注意力机制B.门控循环单元(GRU)与卷积神经网络(CNN)的组合C.随机森林与自回归移动平均模型(ARMA)的融合D.以上模型都有可能二、简答题(本大题共3个小题,共15分)1、(本题5分)机器学习在精神医学中的研究成果有哪些?2、(本题5分)简述机器学习中的优化算法,如随机梯度下降(SGD)。3、(本题5分)什么是集成学习?举例说明常见的集成学习方法。三、应用题(本大题共5个小题,共25分)1、(本题5分)利用生物信息学算法数据挖掘生物信息中的潜在模式。2、(本题5分)依据基因编辑数据设计基因编辑方案和评估效果。3、(本题5分)借助免疫细胞信号通路数据研究免疫反应的调控。4、(本题5分)运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年广州医科大学校本部公开招聘工作人员备考题库及一套完整答案详解
- 2026年三江侗族自治县斗江镇卫生院招聘备考题库及答案详解参考
- 2026年南通市劳动劳务有限公司面向社会公开招聘工作人员备考题库完整参考答案详解
- 2026年厦门大学航空航天学院航空宇航装备动力学课题组行政、科研助理招聘备考题库完整参考答案详解
- 2026年中国铁路通信信号上海工程局集团有限公司成都分公司招聘备考题库带答案详解
- 2026年农业农村部耕地质量和农田工程监督保护中心度面向社会公开招聘工作人员12人备考题库及完整答案详解1套
- 2026年中能建新型储能科技(山东)有限公司招聘备考题库有答案详解
- 2026年三门县人民政府海游街道办事处招聘社区辅工备考题库及1套完整答案详解
- 2026年和建国际工程有限公司招聘备考题库及完整答案详解1套
- 2026年宁波舜瑞产业控股集团有限公司招聘补充备考题库及1套完整答案详解
- 第五单元生物与环境检测卷 2025-2026学年人教版八年级生物上册(含解析)
- 炎德·英才·名校联考联合体2026届高三年级1月联考英语试卷(含答及解析)+听力音频+听力材料
- 2026年河南实达国际人力资源合作有限公司招聘宋城产投劳务派遣人员备考题库及一套答案详解
- GB/T 26110-2025锌铝涂层技术规范
- 北京市朝阳区2024-2025学年七年级上学期期末英语试题(含答案)
- 2025年秋国家开放大学《毛概》终考大作业试题三附答案(供参考)范文
- 税局查合作协议书
- 2331《建筑制图基础》国家开放大学期末考试题库
- 2025年昆明市呈贡区城市投资集团有限公司及下属子公司第二批招聘(11人)备考笔试试题及答案解析
- 广东农信2026年度校园招聘备考题库及答案详解一套
- 建设工程消防设计 施工 验收案例精解900问 2025版
评论
0/150
提交评论