版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
THEULTIMATEGUIDE
TODATA+AIFOR
INDUSTRIES2025
HoworganizationscanleverageAIrightnowtodrivebusinessvalue
ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025TableofContents|2
TABLEOFCONTENTS
INTRODUCTION 3
HOWAICANPOWERSUCCESSINSEVENINDUSTRIES 8
FINANCIALSERVICES 9
MEDIAANDENTERTAINMENT 11
HEALTHCAREANDLIFESCIENCES 13
PUBLICSECTOR 15
RETAILANDCONSUMERGOODS 17
MANUFACTURING 19
TELECOMMUNICATIONS 21
NEXTSTEPS 23
ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025Introduction|3
INTRODUCTION
AIishavingitsmoment.Organizationsfromeverysector—fromfinancialservicesbehemothsandcitygovernmentstobigboxretailersandresearchhospitals—arescramblingtofigureouthowbesttocapitalizeontheenormouspotentialofthistechnology,particularlyadvancementsingenerativeAI.
Accordingtoarecentsurvey,80%of
Fortune500companies
saytheyhavegenAIpoliciesandstrategiesintheworksandplantooperationalizegenAIoverthenextthreeyearstoboost
employeeproductivity,improvecustomerserviceorautomatemanualprocesses.
ButwhileseeminglyeveryoneistalkingaboutAI,noteveryoneisusingit.Infact,onaverage,AIadoptionintheU.S.isstillrelativelylow.AccordingtotheU.S.CensusBureau’sBusinessTrendsandOutlookSurveyAISupplement,anaverageofonly
3.8%
oforganizationsreportcurrently
usingAItoproducegoodsandservices,though
6.5%
saytheyplantoadoptitwithinsixmonths.Adoptionratesrangewidelydependingontheindustry.About18%ofinformationservices
companiesreportedusingAI,comparedto7%forfinancialservicesand5%forhealthcare.Otherindustrieslagevenfurtherbehind,suchasretail(3%)andmanufacturing(3%).
Butthatmaysoonchange.Inthenextfewyears,manyorganizationsnowintheexperimentationphaseplantorolloutnewAIusecases,specificallyforgenerativeAI,citingthepotentialfor
significantreturns,thecompetitivepressuretoinnovateandtheincreasingmaturityofAItechnologies,accordingtothe
HarvardBusinessReview
.
ThepotentialusesforandvalueofAIarevast,spanningvirtuallyeverymajorindustry.Inthefollowingpages,wewillexploreamyriadofwaysorganizationsinarangeofindustriesare
leveragingdataandAItodrivesuccess.
ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025Introduction|4
Herearejustafewexamples:
•Healthcare:Analyzevastamountsofpatientdatatouncoverpatternsandpredictoutcomes,leadingtomoreaccuratediagnosesandpersonalizedtreatments.
•Financialservices:Scanvolumesofmarketdatatoidentifytrendsandgenerateinvestmentdecisions,maximizingreturns.
•Retail:Transformcustomerdataintopersonalizedshoppingexperiences,enhancingcustomersatisfactionanddrivingloyalty.
•Publicsector:Predictdiseaseoutbreaksanddisasterimpactandhelpquicklyandaccuratelydeployemergencyservicestothoseinneed.
•Manufacturing:Detectunusualpatternsanddeviationsinproductionanduse
AI-drivenvisualinspectionsystemstoidentifyqualityissuesandproductdefects,enhancingqualitycontrol.
•Advertising,mediaandentertainment:Extractinsightstoidentifycustomer
behaviors,sentimentsandtrendsandcreatehighlypersonalized,timelyexperiencesforaudiences.
•Telecommunications:Solveandpredictnetworkissuesandservicedisruptionsto
improveservice,reliabilityandoperationalefficiencyandproactivelywarncustomers.
However,despiteitsseeminglyboundlesspotential,theAIadoptionjourneyisnotwithoutits
challenges.Industriesmustnavigatetheconsiderableandlargelyunchartedgovernance,securityandethicalconsiderationsthatcomewithit—nottomentionorganizationalhurdles,dataissuesandthecomplexitiesofthetechnologyitself.
AIADOPTIONVARIESWIDELYBYINDUSTRY
Source:AnalysisofdatafromtheU.S.CensusBureau’s
BusinessTrendsandOutlookSurveyAISupplement
ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025Introduction|5
4KEYCHALLENGESOFGENERATIVEAI
IntherapidlyevolvinglandscapeofgenAI,theinitialaweandskepticismsurroundingits
capabilitieshavegivenwaytoapressingbusinessimperative.Companiesarenowracing
toadoptthetechnologytoenhanceworkforceproductivityandprofitability.However,thepathtoimplementingeffectivegenAIsolutionsisfullofobstacles.Estimatessuggestthat
upto80%
ofAIprojectsfailtoreachproductionandreal-worlduseduetoreasonssuchas:aninabilityto
demonstrateAIvalue,lackoftalentandskills,insufficientdata,misalignmentwithbusinessgoals,andlackoftrustinAIgenerally.
Inarecentinterviewwith
DataCloudNow
,GouthamBelliappa,ManagingDirectorofStrategyandAnalyticsatDeloitte,highlightedfourkeyconsiderationsforbusinessesnavigatingthe
genAIterrain:
Datastrategy:Belliappaemphasizesthecriticalneedforaholisticdatastrategy,assertingthatthe
fragmentednatureofthedatamarketrequiresorganizationstomanagedatainfluxontheirown
terms.AIneedsareliable,continuousstreamofvarieddatatodeliveraccurateinsightsandeffective
solutions.Butorganizationsstrugglewithdataqualityanddatasilosduetolegacysystems.Theyalso
needarobustinfrastructureandstoragesolutiontomanageandprocessthemassiveamountsofdata
required.Awell-defineddatastrategyshouldbethecornerstoneforoverallbusinessstrategies,
prioritiesandinvestments,preventinghastyandpotentiallymisguidedspendingongenAIcapacities.
TaIentandimpIementation:It’salsoimportantfororganizationstofocusontalentacquisitionanddevelopmentinthegenAIeratoguidegenAItowardproducingvaluablecontent.Manyleaders
acrossindustriesfacedifficultiesinhiringandtrainingteamstoimplementAI,andtheymayneedtorestructureteamstoalignwithAIinitiatives.EvenafterovercomingthesechallengestolaunchAI
solutions,organizationsoftenstruggletofullyimplementthem.
Alfluencyandtrust:OrganizationsalsoneedtounderstandAIandbuildtrustinitsapplications.WithgenAI’spotentialtodisruptvariousbusinessfunctions,theneedforfluencyinusage
becomesparamount.
Deloitte
isonecompanythatoffersfluencycoursestoaddressthis
knowledgegap.BuildingtrustinAIisalsoimportant,whilealsoacknowledgingthepotentialbiasesintrainingdataandtheethicalimplicationsofusingAImodels.
Security,governanceandcompIiance:OrganizationsmustsafeguardthedatausedinAI
modelsandapplications,keepingitsecureandincompliancewithprivacyregulations.Doingsorequiresrobustencryption,accesscontrols,continuousmonitoringtoprotectsensitive
information,andastronggovernanceframeworkforcomplianceanddataintegrity.BelliappacallsforethicalgovernanceandregulationtosafeguardagainstthemisuseofgenAIand
underscorestheimportanceofnotcompromisingtrustandpublicsafetyfortheadvantagesofhigherworkforceproductivity.
OvercomingthesechallengesiscrucialforthesuccessfuldeploymentofAIprojects.Leaders
inallsectorsmustprioritizebuildingrobustandsecuredatainfrastructuresanddevelopinga
foundationaldatastrategythatensuresdataquality,accessibilityandcompliance.Byaddressingtheseissues,businessescanunlocksignificantvaluefromAItoincreaserevenue,reduce
operationalcosts,boostproductivityandimprovecustomerexperience.
ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025Introduction|6
SNOWFLAKE:THEPOWEROFDATA+AI
C
:
D
I
R
S
S
O
R
C
ROSS-REGION&
OUDSERVIC
DeveloperscanbringAImodels,frameworksandapplicationsdirectlytotheirdata,
eliminatingthetimeandriskassociatedwithdatatransfers.UserscanseamlesslyintegrateAIintotheirusecasesusingno-code,SQL,
PythonorRESTAPIinterfaces,enablingabroadrangeofteamstointegrateAI
intotheirworkflows.AndSnowflakehasbuilt-ingovernance,accesscontrolsandsafetyguardrails.
Onceamoderndatafoundationand
unifiedplatformforAIandmachinelearningisinplace,Snowflake’srobustnativeAIandMLcapabilities—alongwithanextensive
partnerecosystem—canhelpcustomers
harnessthepowerofgenerativeAI.
SnowflakeCortexAIoffersLLMfunctions,
universalsearch,DocumentAI,no-code
modeldevelopmentandmore.Together,
thesecapabilitiesensurefasterdeploymentandsimplermaintenanceofAIinfrastructureandLLMs,improvedperformance,cost
savings,and,ultimately,aquickerandgreaterreturnoninvestmentinAI.
AtthecoreofasuccessfulAIstrategyisa
G
W
O
O
L
C
-
strongenterprisedatafoundation.With
L
C
N
S
D
U
S
E
Snowflake’sAIDataCloud,organizations
I
CORTEXA
ICCO
acrossindustriesareeliminatingthedatasilosoflegacysystemsandgainingtheabilityto
N
O
Z
I
R
M
M
seamlesslycollect,shareandapplyadvancedanalytics.CustomerschooseSnowflake
O
H
T
S
A
U
P
M
A
N
T
A
E
becauseit’seasytouse,efficientandsecure.
L
E
E
T
E
A
G
D
A
O
I
D
U
T
S
S:
A
D
T
ODE
M
INTEROPERABLE
BuildingandmanaginganAIstackandLLMscanbecomplicated.Theyrequiresubstantialcomputeresourcesandlarge-scalestorage,makingtheset-upandmanagementofAI
C
G
Y
U
T
A
A
H
L
G
A
O
E
N
,
S
L
STORAGE
UNSTRUCTURED,
SEMI-STRUCTURED,
STRUCTURED
infrastructurecostlyandresource-intensive.DevelopingandtrainingAImodelsrequire
C
C
O
P
O
U
N
M
,
T
A
G
P
I
P
N
U
U
E
T
E
:
S
J
L
A
A
Q
V
L
N
A
,
,
P
S
C
T
B
R
L
A
I
T
T
I
Y
O
N
specializedskillsandcanbetime-consuming.Andimplementingthenecessarysecurity
S
C
E
O
C
,
R
I
N
L
I
S
A
I
measuresandmaintainingcompliance
M
U
P
R
L
I
I
T
A
Y
N
C
&
E
A
&
D
A
M
V
A
I
withprivacyregulationsaddmorelayersofcomplexity.
CHATAPIs
OPTIMIZATION
PERFORMANCE
Snowflake’sarchitecturesimplifiesallthat,inseveralways.Itsunifiedplatformisfullymanaged,eliminatingtheneedtoinvestinandmaintainacomplexAIinfrastructure.Snowflakeallowsforseamlessscalingof
computationalresources,accommodatingthedynamicneedsofAIworkflows.
ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025Introduction|7
TRANSFORMINGBUSINESSFUNCTIONS
ACROSSINDUSTRIES
WithAIcapabilitiesatopastrongdatafoundation,organizationsin
everyindustry—whetheraretailstore,hospital,governmentagency,bankorenergycompany—canradicallyoptimize
essentialbusinessandoperationsfunctions.Accordingto
the
HarvardBusinessReview
,mostbusinessfunctionsand
morethan40%ofallU.S.workactivitycanbeaugmented,
automatedorreinventedwithgenAI.HerearejustafewwaysthatAIcantransformcorebusinessfunctionsacrossindustries:
Marketing:GenAIcananalyzecustomerdatatoidentify
patternsandpreferences,somarketerscancreatepersonalizedcampaignsandrecommendations.Itcanalsopowerpredictiveanalytics,helpingmarketersforecastfuturetrendsand
behaviors,andthusoptimizecampaignsandallocateresources.AI-poweredleadscoringcanimprovelead-to-meeting
conversion,improvesalesconversionratesandacceleratenetnewrevenue.Otherusecasesincludepipelineforecasting,
audiencesegmentation,marketingattributionandmore.
Finance:FinancedepartmentscanleverageAIandML
capabilitiestopowercorporateplanningandfinancial
forecastingandautomatefinancialoperations.LLM-poweredfeaturescanautomatethecontractreviewprocessfor
documentslikeorderformsandsalesagreementsreviews,
whichcansaveteamstimeandacceleratesalescyclesaswellashelpensurecontractcompliance.
Humanresources:AI-poweredemployeeassistantscanprovidepersonalizedsupporttoemployees,offeringnear-instant,
relevantinformationbasedonaninternalknowledgebase.
AIhiringassistantscanhelphiringmanagerscreatestandardjobdescriptions,identifyqualifiedcandidatesbasedonjob
descriptionmatch,generateinterviewkitsandspeedup
resumescreening.Overall,AIcanoptimizehiringprocesses,increaseproductivity,andimproveboththecandidatehiringexperienceandtheemployeeexperience.
IT:GenAIandMLcanhelpITteamsoptimizesoftwarelicensesandreduceSaaSspendwhiledrasticallydecreasingmean
timetoresolve(MTTR)forIToperationsandrequesttickets.QAAIassistantscanhelpdevelopersandbusinessanalysts
generatetestcasesforsoftwaredevelopmentquicklyandatscale,savedeveloperstimeandimprovetesting.CloudOpsAIassistantscanofferteamsfast,relevantinformationbasedonaninternalknowledgebasetoimproveoperationalefficiencyandproductivity.
Sales:SalesteamscanuseautomatedBItoperformanalytics
usingnatural-languageprompts.Customersuccessassistants
canusecallnotesandemailstouncovercross-sellingand
upsellingopportunities.Text-processingcapabilitiescanprovidesummarizationandsentimentanalysisofcalltranscripts.
Customerservice:AI-poweredchatbotsandconversational
assistantscanhandlecustomerinquiries,providesupportandresolveservicetickets24/7,leadingtoimprovedcustomer
satisfactionandreducedoperationalcosts.GenAIcancreatepersonalizedresponsesandrecommendations,enhancingthecustomerexperience.
Product/servicedevelopment:AutomatedBIcananalyze
largedatasetstouncoverinsights,trendsandpatternsthat
caninformdecision-makingonfeatureadoption.Product
knowledgeassistantscanusedesignwrite-ups,documentationandinternalresearchtomakerecommendationsfornew
productsandservices.
64%ofbusinesses
believethatAIwillhelpincreasetheiroverallproductivity—ForbesAdvisor
Next,we’llexploretheseandotherusecasesindepthacross
sevenindustries:financialservices;advertising,mediaand
entertainment;healthcareandlifesciences;publicsector;retail;manufacturing;andtelecommunications.We’llalsodiscover
howcustomersandpartnersareusingSnowflaketounlockthepowerofAIfortheirorganizations.
HOWAICANPOWER
SUCCESSIN7INDUSTRIES
ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025FinancialServices|9
FINANCIALSERVICES
FromATMwithdrawalstostockpurchases,nearlyeveryfinancialtransactionconsumersmakecreatesdatathathasthepotentialtoinformfinancialinstitutions—todevelopbetterbusiness-criticalworkflows,enablemoregranularquantitativeresearchandimprovecustomeranalytics.
Butjustasvaluableistheapproximately80%ofdataheldby
financialservicesorganizationsthatisunstructured,intheformofemails,contracts,patentfilingsandtranscriptsthatonly3%ofcompaniesaremakinguseof.Evenweathertrendsanduserreviewscanbeatreasuretroveofinsightsthatgivebanksor
assetmanagersacompetitiveedge.
ThatiswhygenAI’sabilitytoextractvaluefromthiskindof
unstructureddataissopowerfulforthefinancialindustry,
particularlyinbanking,insuranceandcapitalmarkets.By
quicklyidentifyingsubtlesignalsandminimizingmanualerrors,AIcanhelpteamsautomatedataprocessingandfocuson
strategicdecision-makingandcustomerengagement.
HerearethreeofthemanywaysthefinancialservicesindustrycandrivebusinesssuccesswithAI:
ENHANCEDPORTFOLIOANALYTICS
ANDASSETSERVICING
Institutionalinvestorsrequiresophisticatedanalyticson
theirportfoliostoguidecriticaldecisionssuchassecurity
selection,rebalancingandoptimization.WithAI,investors
canusenaturallanguagetoquerydataassetsandgain
actionableinsights.Conversationalassistantscanuseportfoliowarehouses,ordermanagementsystems,riskenginesand
third-partydatatoforecastmarkettrends,optimizeportfolioallocationsandimproverisk-adjustedreturns.Additionally,
machinelearningmodelscanadapttochangingmarket
conditions,providingagilityandresponsivenessinarapidlyevolvinginvestmentlandscape.
ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025FinancialServices|10
MARKETINGCAMPAIGNOPTIMIZATION
Marketersinthefinancialsectormustwalkafineline
betweendeliveringultra-personalizedclientexperiences
whilealsorespectingcustomerprivacy(andcomplying
withfinanciallaw).AIcanhelpbyanalyzingcustomerdata,transactionhistoriesandbehavioralpatternstoprovide
tailoredrecommendationsforspecificfinancialsegments.
ConversationalAIassistantscananalyzetheperformance
ofmarketingcampaignsinrealtime,suggestingadjustmentstomaximizeROI.Theycanalsoanalyzethird-partyfinancialdatatoforecastfuturecustomertrends,helpingmarketingteamsplanandexecutemoreeffectivecampaigns.
EFFICIENTCLAIMSMANAGEMENT
Siftingthroughthemanytypesofdatarequiredtoprocess
insuranceclaims—likewitnessstatements,policydocuments,dashcamfootageoremergencyservicesrecordings—ishighlymanual,time-consuminganderror-prone.InsurancemanagerscansavetimeandexpensebyusingAI-poweredtools,such
astextprocessingandchatbots,toquicklyaccessandquery
data.Thesecapabilitiescanbeappliedfromfirstnoticeofloss(FNOL)throughouttheclaimlifecycletoenhanceoperationalefficiency,lowercostsandleadtofasterclaimsresponses,
ultimatelyimprovingthecustomerexperience.
80%ofdataheldbyfinancialinstitutionsisunstructured,butonly3%ofthemareusingit.—FintechFutures
CUSTOMERSUCCESSSTORIES
StateStreetacceleratesinvestmentinsightsbybuildingAI-enhancedalphadataplatformonSnowflake
WithaSnowflake-powereddatafoundationthatoffers
nativedatasecurityandgovernance,StateStreethas
beenabletoexplorepotentialAIusecasesforitsdata
platform.OneoftheStateStreet-builtdeeplearning
modelsfocusesondataqualityandanomalydetection.
Themodellooksatdifferentaspectsofaportfoliotoseeifthereareanymarketvalueissuesthatananalystmightneedtoverify.Thishappensinararecircumstancewheninvestmentdataiswrong,whichcanhaveabigimpact
onriskmanagementmodelsorportfolioevaluations.
Typically,manualthreshold-basedfiltersarecreatedto
detectanomalies,resultinginalargenumberoffalse
alertsthatrequiremanualinvestigation.StateStreet
appliedAImodels,whichlearnedtobecomemore
efficientatremovingfalsepositivealerts.Theydetected100%oftrueexceptionsandeliminated87%offalse
positives—resultingina25xproductivitygainfordataoperationsteamswhopreviouslyhadtoinvestigateeachexceptionasapotentialerror.
Readthefullstory
TSImagineadoptsgenAIatscaleandsaves4,000hoursofeffortannually
TSImaginedeliversaSaaSplatformforintegrated
electronicfront-officetrading,portfoliomanagementandfinancialriskthathelpsmorethan500globalfinancial
institutionsbettergenerateandprotectassetswithin
today’sfast-evolvingmarkets.Everyyear,membersof
thedatamanagementteamwouldspendthousandsof
hoursreadingmorethan100,000emailstomonitorfor
notificationsfromtheirdataproviders.Thesecritical
emailsdetailedupcomingproductchanges,anyofwhichcouldultimatelyimpactTSImagine’sclients.Missingevenasingleemailcouldleadtoadownstreamproductoutage—andveryunhappycustomers.WithSnowflakeCortexAI,TSImaginehasautomatedemailintakeandsaved
employeesmorethan4,000hoursayearonanerror-
pronesortingprocess.Now,CortexAIdeletesduplicateornonrelevantmessages,andcreates,assigns,prioritizesandschedulesJiraticketsforeachemail.Theteamhasn’tmissedanotificationsinceimplementingthenewprocessinDecember2023.
Readthefullstory
ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025MediaandEntertainment|11
MEDIAANDENTERTAINMENT
Theadvertising,mediaandentertainmentindustriesare
undergoingsignificanttransformationduetoongoing
advancementsintechnologyandevolvingconsumerbehaviors.Asstreamingservicesandsmartdeviceshaveevolvedand
proliferated,audienceshavecometoexpecton-demand,
personalizedcontentanytime,anywhere.Tostaycompetitive,industryleadersmustnavigatealandscapecharacterizedbyrapidinnovation,diversification,regulationsandtheneedfordata-drivenstrategies.
Mediacompaniesareaccustomedtostayingaheadofthe
curve.TheseearlyadoptersofadvancedtechnologyhavebeenusingAIandmachinelearningforyearstopowertargeted
advertising,sentimentanalysisandenhanceduserexperiences.Theycontinuetousehigh-performanceAIandMLcomputingenginestoseamlesslymanagebillionsofonlineinteractions
eachday,analyzecustomerbehaviorpatternsanddetermine
howcontentresonateswithsubscribers.AndindustryleadersareadoptingadvancedgenerativeAIsolutionstogaina
competitiveedge,drivingestimatesthattheglobalAImarketinmediaandentertainmentwillbeworth
$196billionby2033
.ByusingAItoanalyzevastamountsofdataandautomate
processes,companiesareenhancingdecision-making,creatingmorecompellingandpersonalizedcontent,andoptimizingthemediasupplychain.
Herearethreeofthetopwaysadvertising,mediaand
entertainmentcompaniescangainacompetitiveedgewithAI:
PERSONALIZEDEXPERIENCES
Creatingbespokecustomerexperiencesisacrucialcompetitiveedgeintoday’scrowdedmedialandscape.Byusingnatural
languageprocessingalgorithmstoextractinsightsfromtextualcontent,suchassocialmediapostsandemails,companiescanswiftlyidentifycustomerbehaviors,sentimentsandtrends.Thiscomprehensiveanalysisempowerscompaniestocrafthighly
targetedandrelevantcontentmorequickly,aswellasfine-tunecontentrecommendations.Asaresult,eachcustomerenjoysamoreengagingandsatisfyingexperience,leadingtoincreasedcustomerloyalty.
ADVERTISINGREVENUEOPTIMIZATION
Optimizingadspendisaperpetualchallengeforbrand
advertisersandadagencies.GenAIhasthepotentialtoboostadrevenuebyenablingprecisetargetingandpersonalized
campaignsthroughthethoroughanalysisofvastconsumer
data.Thistechnologyallowsadvertiserstocustomize
messagingtoindividualpreferencesanddemographics,
ensuringadsarehighlyrelevantandengaging.Additionally,genAIcanautomateadcreationandstreamlineprocesses,reducingcostsandfacilitatingthedeliveryofeffectiveadsatscale.
ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025MediaandEntertainment|12
IPANDASSETPROTECTION
Safeguardingintellectualproperty(IP)andassetsisvital
forpreservingtheworkandreputationsofartists,creatives,
brandsandcompanies.Usingadvancedalgorithms,genAIandmachinelearningcanmonitordigitalplatformsanddistributionchannelstodetectunauthorizeduseofIPrightsinnearreal
time.Thisallowscompaniestotakeproactivemeasuressuchasissuingtakedownnotices.Additionally,itempowerscompaniestodevelopcomprehensivedigitalrightsmanagementsolutionstosecurecontentdistributionandmonetizationtohelp
combatcostlypiracy.GenAIcanalsoenhancetraditionalassetprotectionmethodsbyanalyzingpatternsindigitalcontent
tohelpidentifycopyrightinfringement,plagiarismandcontentmanipulation.
TheAImediaandentertainmentmarketwillbeworth
$196billionby2033
.
—Market.us
CUSTOMERSUCCESSSTORIES
SYSTEM1
System1improvesteamefficiencywithSnowflakeCortexandSlackbotsolution
System1,aleaderinAI-drivendigitalmarketing,struggledwithsiloedinformationandinefficientcommunication
acro
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全员避灾安全培训课件
- 营运客车消防安全规定
- 艺术教育专业就业前景分析
- 经济学就业前景好吗
- 医患关系名词解释汇编
- 会计职业方向与前景
- 2025-2026学年江西省南昌某中学九年级(上)期中语文试卷(含答案)
- 2025-2026学年统编版九年级语文上册期中提优测试+答案
- 光伏面板安装培训课件教学
- 人力资源考试真题及答案
- 蜡疗操作评分标准
- 2023广东高职高考英语真题卷附答案解析
- 心理学导论学习通超星课后章节答案期末考试题库2023年
- 锅炉房烟、风道制作安装施工方案
- 新版糖尿病看图对话新
- 国家自然科学基金依托单位管理培训(第二十八期)测试卷附有答案
- 色温-XY-UV色坐标换算公式
- 侦查学的重点
- 口腔影像学-医学影像检查技术及正常图像
- GB/T 22525-2008正多面棱体
- 宋小宝海燕小品《碰瓷》剧本台词完整版
评论
0/150
提交评论