Snowflake:2025年数据与人工智能终极行业指南:组织如何抢占AI风口 驱动业务价值新增长 The Ultimate Guide to Data + AI for Industries_第1页
Snowflake:2025年数据与人工智能终极行业指南:组织如何抢占AI风口 驱动业务价值新增长 The Ultimate Guide to Data + AI for Industries_第2页
Snowflake:2025年数据与人工智能终极行业指南:组织如何抢占AI风口 驱动业务价值新增长 The Ultimate Guide to Data + AI for Industries_第3页
Snowflake:2025年数据与人工智能终极行业指南:组织如何抢占AI风口 驱动业务价值新增长 The Ultimate Guide to Data + AI for Industries_第4页
Snowflake:2025年数据与人工智能终极行业指南:组织如何抢占AI风口 驱动业务价值新增长 The Ultimate Guide to Data + AI for Industries_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

THEULTIMATEGUIDE

TODATA+AIFOR

INDUSTRIES2025

HoworganizationscanleverageAIrightnowtodrivebusinessvalue

ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025TableofContents|2

TABLEOFCONTENTS

INTRODUCTION 3

HOWAICANPOWERSUCCESSINSEVENINDUSTRIES 8

FINANCIALSERVICES 9

MEDIAANDENTERTAINMENT 11

HEALTHCAREANDLIFESCIENCES 13

PUBLICSECTOR 15

RETAILANDCONSUMERGOODS 17

MANUFACTURING 19

TELECOMMUNICATIONS 21

NEXTSTEPS 23

ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025Introduction|3

INTRODUCTION

AIishavingitsmoment.Organizationsfromeverysector—fromfinancialservicesbehemothsandcitygovernmentstobigboxretailersandresearchhospitals—arescramblingtofigureouthowbesttocapitalizeontheenormouspotentialofthistechnology,particularlyadvancementsingenerativeAI.

Accordingtoarecentsurvey,80%of

Fortune500companies

saytheyhavegenAIpoliciesandstrategiesintheworksandplantooperationalizegenAIoverthenextthreeyearstoboost

employeeproductivity,improvecustomerserviceorautomatemanualprocesses.

ButwhileseeminglyeveryoneistalkingaboutAI,noteveryoneisusingit.Infact,onaverage,AIadoptionintheU.S.isstillrelativelylow.AccordingtotheU.S.CensusBureau’sBusinessTrendsandOutlookSurveyAISupplement,anaverageofonly

3.8%

oforganizationsreportcurrently

usingAItoproducegoodsandservices,though

6.5%

saytheyplantoadoptitwithinsixmonths.Adoptionratesrangewidelydependingontheindustry.About18%ofinformationservices

companiesreportedusingAI,comparedto7%forfinancialservicesand5%forhealthcare.Otherindustrieslagevenfurtherbehind,suchasretail(3%)andmanufacturing(3%).

Butthatmaysoonchange.Inthenextfewyears,manyorganizationsnowintheexperimentationphaseplantorolloutnewAIusecases,specificallyforgenerativeAI,citingthepotentialfor

significantreturns,thecompetitivepressuretoinnovateandtheincreasingmaturityofAItechnologies,accordingtothe

HarvardBusinessReview

.

ThepotentialusesforandvalueofAIarevast,spanningvirtuallyeverymajorindustry.Inthefollowingpages,wewillexploreamyriadofwaysorganizationsinarangeofindustriesare

leveragingdataandAItodrivesuccess.

ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025Introduction|4

Herearejustafewexamples:

•Healthcare:Analyzevastamountsofpatientdatatouncoverpatternsandpredictoutcomes,leadingtomoreaccuratediagnosesandpersonalizedtreatments.

•Financialservices:Scanvolumesofmarketdatatoidentifytrendsandgenerateinvestmentdecisions,maximizingreturns.

•Retail:Transformcustomerdataintopersonalizedshoppingexperiences,enhancingcustomersatisfactionanddrivingloyalty.

•Publicsector:Predictdiseaseoutbreaksanddisasterimpactandhelpquicklyandaccuratelydeployemergencyservicestothoseinneed.

•Manufacturing:Detectunusualpatternsanddeviationsinproductionanduse

AI-drivenvisualinspectionsystemstoidentifyqualityissuesandproductdefects,enhancingqualitycontrol.

•Advertising,mediaandentertainment:Extractinsightstoidentifycustomer

behaviors,sentimentsandtrendsandcreatehighlypersonalized,timelyexperiencesforaudiences.

•Telecommunications:Solveandpredictnetworkissuesandservicedisruptionsto

improveservice,reliabilityandoperationalefficiencyandproactivelywarncustomers.

However,despiteitsseeminglyboundlesspotential,theAIadoptionjourneyisnotwithoutits

challenges.Industriesmustnavigatetheconsiderableandlargelyunchartedgovernance,securityandethicalconsiderationsthatcomewithit—nottomentionorganizationalhurdles,dataissuesandthecomplexitiesofthetechnologyitself.

AIADOPTIONVARIESWIDELYBYINDUSTRY

Source:AnalysisofdatafromtheU.S.CensusBureau’s

BusinessTrendsandOutlookSurveyAISupplement

ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025Introduction|5

4KEYCHALLENGESOFGENERATIVEAI

IntherapidlyevolvinglandscapeofgenAI,theinitialaweandskepticismsurroundingits

capabilitieshavegivenwaytoapressingbusinessimperative.Companiesarenowracing

toadoptthetechnologytoenhanceworkforceproductivityandprofitability.However,thepathtoimplementingeffectivegenAIsolutionsisfullofobstacles.Estimatessuggestthat

upto80%

ofAIprojectsfailtoreachproductionandreal-worlduseduetoreasonssuchas:aninabilityto

demonstrateAIvalue,lackoftalentandskills,insufficientdata,misalignmentwithbusinessgoals,andlackoftrustinAIgenerally.

Inarecentinterviewwith

DataCloudNow

,GouthamBelliappa,ManagingDirectorofStrategyandAnalyticsatDeloitte,highlightedfourkeyconsiderationsforbusinessesnavigatingthe

genAIterrain:

Datastrategy:Belliappaemphasizesthecriticalneedforaholisticdatastrategy,assertingthatthe

fragmentednatureofthedatamarketrequiresorganizationstomanagedatainfluxontheirown

terms.AIneedsareliable,continuousstreamofvarieddatatodeliveraccurateinsightsandeffective

solutions.Butorganizationsstrugglewithdataqualityanddatasilosduetolegacysystems.Theyalso

needarobustinfrastructureandstoragesolutiontomanageandprocessthemassiveamountsofdata

required.Awell-defineddatastrategyshouldbethecornerstoneforoverallbusinessstrategies,

prioritiesandinvestments,preventinghastyandpotentiallymisguidedspendingongenAIcapacities.

TaIentandimpIementation:It’salsoimportantfororganizationstofocusontalentacquisitionanddevelopmentinthegenAIeratoguidegenAItowardproducingvaluablecontent.Manyleaders

acrossindustriesfacedifficultiesinhiringandtrainingteamstoimplementAI,andtheymayneedtorestructureteamstoalignwithAIinitiatives.EvenafterovercomingthesechallengestolaunchAI

solutions,organizationsoftenstruggletofullyimplementthem.

Alfluencyandtrust:OrganizationsalsoneedtounderstandAIandbuildtrustinitsapplications.WithgenAI’spotentialtodisruptvariousbusinessfunctions,theneedforfluencyinusage

becomesparamount.

Deloitte

isonecompanythatoffersfluencycoursestoaddressthis

knowledgegap.BuildingtrustinAIisalsoimportant,whilealsoacknowledgingthepotentialbiasesintrainingdataandtheethicalimplicationsofusingAImodels.

Security,governanceandcompIiance:OrganizationsmustsafeguardthedatausedinAI

modelsandapplications,keepingitsecureandincompliancewithprivacyregulations.Doingsorequiresrobustencryption,accesscontrols,continuousmonitoringtoprotectsensitive

information,andastronggovernanceframeworkforcomplianceanddataintegrity.BelliappacallsforethicalgovernanceandregulationtosafeguardagainstthemisuseofgenAIand

underscorestheimportanceofnotcompromisingtrustandpublicsafetyfortheadvantagesofhigherworkforceproductivity.

OvercomingthesechallengesiscrucialforthesuccessfuldeploymentofAIprojects.Leaders

inallsectorsmustprioritizebuildingrobustandsecuredatainfrastructuresanddevelopinga

foundationaldatastrategythatensuresdataquality,accessibilityandcompliance.Byaddressingtheseissues,businessescanunlocksignificantvaluefromAItoincreaserevenue,reduce

operationalcosts,boostproductivityandimprovecustomerexperience.

ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025Introduction|6

SNOWFLAKE:THEPOWEROFDATA+AI

C

:

D

I

R

S

S

O

R

C

ROSS-REGION&

OUDSERVIC

DeveloperscanbringAImodels,frameworksandapplicationsdirectlytotheirdata,

eliminatingthetimeandriskassociatedwithdatatransfers.UserscanseamlesslyintegrateAIintotheirusecasesusingno-code,SQL,

PythonorRESTAPIinterfaces,enablingabroadrangeofteamstointegrateAI

intotheirworkflows.AndSnowflakehasbuilt-ingovernance,accesscontrolsandsafetyguardrails.

Onceamoderndatafoundationand

unifiedplatformforAIandmachinelearningisinplace,Snowflake’srobustnativeAIandMLcapabilities—alongwithanextensive

partnerecosystem—canhelpcustomers

harnessthepowerofgenerativeAI.

SnowflakeCortexAIoffersLLMfunctions,

universalsearch,DocumentAI,no-code

modeldevelopmentandmore.Together,

thesecapabilitiesensurefasterdeploymentandsimplermaintenanceofAIinfrastructureandLLMs,improvedperformance,cost

savings,and,ultimately,aquickerandgreaterreturnoninvestmentinAI.

AtthecoreofasuccessfulAIstrategyisa

G

W

O

O

L

C

-

strongenterprisedatafoundation.With

L

C

N

S

D

U

S

E

Snowflake’sAIDataCloud,organizations

I

CORTEXA

ICCO

acrossindustriesareeliminatingthedatasilosoflegacysystemsandgainingtheabilityto

N

O

Z

I

R

M

M

seamlesslycollect,shareandapplyadvancedanalytics.CustomerschooseSnowflake

O

H

T

S

A

U

P

M

A

N

T

A

E

becauseit’seasytouse,efficientandsecure.

L

E

E

T

E

A

G

D

A

O

I

D

U

T

S

S:

A

D

T

ODE

M

INTEROPERABLE

BuildingandmanaginganAIstackandLLMscanbecomplicated.Theyrequiresubstantialcomputeresourcesandlarge-scalestorage,makingtheset-upandmanagementofAI

C

G

Y

U

T

A

A

H

L

G

A

O

E

N

,

S

L

STORAGE

UNSTRUCTURED,

SEMI-STRUCTURED,

STRUCTURED

infrastructurecostlyandresource-intensive.DevelopingandtrainingAImodelsrequire

C

C

O

P

O

U

N

M

,

T

A

G

P

I

P

N

U

U

E

T

E

:

S

J

L

A

A

Q

V

L

N

A

,

,

P

S

C

T

B

R

L

A

I

T

T

I

Y

O

N

specializedskillsandcanbetime-consuming.Andimplementingthenecessarysecurity

S

C

E

O

C

,

R

I

N

L

I

S

A

I

measuresandmaintainingcompliance

M

U

P

R

L

I

I

T

A

Y

N

C

&

E

A

&

D

A

M

V

A

I

withprivacyregulationsaddmorelayersofcomplexity.

CHATAPIs

OPTIMIZATION

PERFORMANCE

Snowflake’sarchitecturesimplifiesallthat,inseveralways.Itsunifiedplatformisfullymanaged,eliminatingtheneedtoinvestinandmaintainacomplexAIinfrastructure.Snowflakeallowsforseamlessscalingof

computationalresources,accommodatingthedynamicneedsofAIworkflows.

ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025Introduction|7

TRANSFORMINGBUSINESSFUNCTIONS

ACROSSINDUSTRIES

WithAIcapabilitiesatopastrongdatafoundation,organizationsin

everyindustry—whetheraretailstore,hospital,governmentagency,bankorenergycompany—canradicallyoptimize

essentialbusinessandoperationsfunctions.Accordingto

the

HarvardBusinessReview

,mostbusinessfunctionsand

morethan40%ofallU.S.workactivitycanbeaugmented,

automatedorreinventedwithgenAI.HerearejustafewwaysthatAIcantransformcorebusinessfunctionsacrossindustries:

Marketing:GenAIcananalyzecustomerdatatoidentify

patternsandpreferences,somarketerscancreatepersonalizedcampaignsandrecommendations.Itcanalsopowerpredictiveanalytics,helpingmarketersforecastfuturetrendsand

behaviors,andthusoptimizecampaignsandallocateresources.AI-poweredleadscoringcanimprovelead-to-meeting

conversion,improvesalesconversionratesandacceleratenetnewrevenue.Otherusecasesincludepipelineforecasting,

audiencesegmentation,marketingattributionandmore.

Finance:FinancedepartmentscanleverageAIandML

capabilitiestopowercorporateplanningandfinancial

forecastingandautomatefinancialoperations.LLM-poweredfeaturescanautomatethecontractreviewprocessfor

documentslikeorderformsandsalesagreementsreviews,

whichcansaveteamstimeandacceleratesalescyclesaswellashelpensurecontractcompliance.

Humanresources:AI-poweredemployeeassistantscanprovidepersonalizedsupporttoemployees,offeringnear-instant,

relevantinformationbasedonaninternalknowledgebase.

AIhiringassistantscanhelphiringmanagerscreatestandardjobdescriptions,identifyqualifiedcandidatesbasedonjob

descriptionmatch,generateinterviewkitsandspeedup

resumescreening.Overall,AIcanoptimizehiringprocesses,increaseproductivity,andimproveboththecandidatehiringexperienceandtheemployeeexperience.

IT:GenAIandMLcanhelpITteamsoptimizesoftwarelicensesandreduceSaaSspendwhiledrasticallydecreasingmean

timetoresolve(MTTR)forIToperationsandrequesttickets.QAAIassistantscanhelpdevelopersandbusinessanalysts

generatetestcasesforsoftwaredevelopmentquicklyandatscale,savedeveloperstimeandimprovetesting.CloudOpsAIassistantscanofferteamsfast,relevantinformationbasedonaninternalknowledgebasetoimproveoperationalefficiencyandproductivity.

Sales:SalesteamscanuseautomatedBItoperformanalytics

usingnatural-languageprompts.Customersuccessassistants

canusecallnotesandemailstouncovercross-sellingand

upsellingopportunities.Text-processingcapabilitiescanprovidesummarizationandsentimentanalysisofcalltranscripts.

Customerservice:AI-poweredchatbotsandconversational

assistantscanhandlecustomerinquiries,providesupportandresolveservicetickets24/7,leadingtoimprovedcustomer

satisfactionandreducedoperationalcosts.GenAIcancreatepersonalizedresponsesandrecommendations,enhancingthecustomerexperience.

Product/servicedevelopment:AutomatedBIcananalyze

largedatasetstouncoverinsights,trendsandpatternsthat

caninformdecision-makingonfeatureadoption.Product

knowledgeassistantscanusedesignwrite-ups,documentationandinternalresearchtomakerecommendationsfornew

productsandservices.

64%ofbusinesses

believethatAIwillhelpincreasetheiroverallproductivity—ForbesAdvisor

Next,we’llexploretheseandotherusecasesindepthacross

sevenindustries:financialservices;advertising,mediaand

entertainment;healthcareandlifesciences;publicsector;retail;manufacturing;andtelecommunications.We’llalsodiscover

howcustomersandpartnersareusingSnowflaketounlockthepowerofAIfortheirorganizations.

HOWAICANPOWER

SUCCESSIN7INDUSTRIES

ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025FinancialServices|9

FINANCIALSERVICES

FromATMwithdrawalstostockpurchases,nearlyeveryfinancialtransactionconsumersmakecreatesdatathathasthepotentialtoinformfinancialinstitutions—todevelopbetterbusiness-criticalworkflows,enablemoregranularquantitativeresearchandimprovecustomeranalytics.

Butjustasvaluableistheapproximately80%ofdataheldby

financialservicesorganizationsthatisunstructured,intheformofemails,contracts,patentfilingsandtranscriptsthatonly3%ofcompaniesaremakinguseof.Evenweathertrendsanduserreviewscanbeatreasuretroveofinsightsthatgivebanksor

assetmanagersacompetitiveedge.

ThatiswhygenAI’sabilitytoextractvaluefromthiskindof

unstructureddataissopowerfulforthefinancialindustry,

particularlyinbanking,insuranceandcapitalmarkets.By

quicklyidentifyingsubtlesignalsandminimizingmanualerrors,AIcanhelpteamsautomatedataprocessingandfocuson

strategicdecision-makingandcustomerengagement.

HerearethreeofthemanywaysthefinancialservicesindustrycandrivebusinesssuccesswithAI:

ENHANCEDPORTFOLIOANALYTICS

ANDASSETSERVICING

Institutionalinvestorsrequiresophisticatedanalyticson

theirportfoliostoguidecriticaldecisionssuchassecurity

selection,rebalancingandoptimization.WithAI,investors

canusenaturallanguagetoquerydataassetsandgain

actionableinsights.Conversationalassistantscanuseportfoliowarehouses,ordermanagementsystems,riskenginesand

third-partydatatoforecastmarkettrends,optimizeportfolioallocationsandimproverisk-adjustedreturns.Additionally,

machinelearningmodelscanadapttochangingmarket

conditions,providingagilityandresponsivenessinarapidlyevolvinginvestmentlandscape.

ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025FinancialServices|10

MARKETINGCAMPAIGNOPTIMIZATION

Marketersinthefinancialsectormustwalkafineline

betweendeliveringultra-personalizedclientexperiences

whilealsorespectingcustomerprivacy(andcomplying

withfinanciallaw).AIcanhelpbyanalyzingcustomerdata,transactionhistoriesandbehavioralpatternstoprovide

tailoredrecommendationsforspecificfinancialsegments.

ConversationalAIassistantscananalyzetheperformance

ofmarketingcampaignsinrealtime,suggestingadjustmentstomaximizeROI.Theycanalsoanalyzethird-partyfinancialdatatoforecastfuturecustomertrends,helpingmarketingteamsplanandexecutemoreeffectivecampaigns.

EFFICIENTCLAIMSMANAGEMENT

Siftingthroughthemanytypesofdatarequiredtoprocess

insuranceclaims—likewitnessstatements,policydocuments,dashcamfootageoremergencyservicesrecordings—ishighlymanual,time-consuminganderror-prone.InsurancemanagerscansavetimeandexpensebyusingAI-poweredtools,such

astextprocessingandchatbots,toquicklyaccessandquery

data.Thesecapabilitiescanbeappliedfromfirstnoticeofloss(FNOL)throughouttheclaimlifecycletoenhanceoperationalefficiency,lowercostsandleadtofasterclaimsresponses,

ultimatelyimprovingthecustomerexperience.

80%ofdataheldbyfinancialinstitutionsisunstructured,butonly3%ofthemareusingit.—FintechFutures

CUSTOMERSUCCESSSTORIES

StateStreetacceleratesinvestmentinsightsbybuildingAI-enhancedalphadataplatformonSnowflake

WithaSnowflake-powereddatafoundationthatoffers

nativedatasecurityandgovernance,StateStreethas

beenabletoexplorepotentialAIusecasesforitsdata

platform.OneoftheStateStreet-builtdeeplearning

modelsfocusesondataqualityandanomalydetection.

Themodellooksatdifferentaspectsofaportfoliotoseeifthereareanymarketvalueissuesthatananalystmightneedtoverify.Thishappensinararecircumstancewheninvestmentdataiswrong,whichcanhaveabigimpact

onriskmanagementmodelsorportfolioevaluations.

Typically,manualthreshold-basedfiltersarecreatedto

detectanomalies,resultinginalargenumberoffalse

alertsthatrequiremanualinvestigation.StateStreet

appliedAImodels,whichlearnedtobecomemore

efficientatremovingfalsepositivealerts.Theydetected100%oftrueexceptionsandeliminated87%offalse

positives—resultingina25xproductivitygainfordataoperationsteamswhopreviouslyhadtoinvestigateeachexceptionasapotentialerror.

Readthefullstory

TSImagineadoptsgenAIatscaleandsaves4,000hoursofeffortannually

TSImaginedeliversaSaaSplatformforintegrated

electronicfront-officetrading,portfoliomanagementandfinancialriskthathelpsmorethan500globalfinancial

institutionsbettergenerateandprotectassetswithin

today’sfast-evolvingmarkets.Everyyear,membersof

thedatamanagementteamwouldspendthousandsof

hoursreadingmorethan100,000emailstomonitorfor

notificationsfromtheirdataproviders.Thesecritical

emailsdetailedupcomingproductchanges,anyofwhichcouldultimatelyimpactTSImagine’sclients.Missingevenasingleemailcouldleadtoadownstreamproductoutage—andveryunhappycustomers.WithSnowflakeCortexAI,TSImaginehasautomatedemailintakeandsaved

employeesmorethan4,000hoursayearonanerror-

pronesortingprocess.Now,CortexAIdeletesduplicateornonrelevantmessages,andcreates,assigns,prioritizesandschedulesJiraticketsforeachemail.Theteamhasn’tmissedanotificationsinceimplementingthenewprocessinDecember2023.

Readthefullstory

ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025MediaandEntertainment|11

MEDIAANDENTERTAINMENT

Theadvertising,mediaandentertainmentindustriesare

undergoingsignificanttransformationduetoongoing

advancementsintechnologyandevolvingconsumerbehaviors.Asstreamingservicesandsmartdeviceshaveevolvedand

proliferated,audienceshavecometoexpecton-demand,

personalizedcontentanytime,anywhere.Tostaycompetitive,industryleadersmustnavigatealandscapecharacterizedbyrapidinnovation,diversification,regulationsandtheneedfordata-drivenstrategies.

Mediacompaniesareaccustomedtostayingaheadofthe

curve.TheseearlyadoptersofadvancedtechnologyhavebeenusingAIandmachinelearningforyearstopowertargeted

advertising,sentimentanalysisandenhanceduserexperiences.Theycontinuetousehigh-performanceAIandMLcomputingenginestoseamlesslymanagebillionsofonlineinteractions

eachday,analyzecustomerbehaviorpatternsanddetermine

howcontentresonateswithsubscribers.AndindustryleadersareadoptingadvancedgenerativeAIsolutionstogaina

competitiveedge,drivingestimatesthattheglobalAImarketinmediaandentertainmentwillbeworth

$196billionby2033

.ByusingAItoanalyzevastamountsofdataandautomate

processes,companiesareenhancingdecision-making,creatingmorecompellingandpersonalizedcontent,andoptimizingthemediasupplychain.

Herearethreeofthetopwaysadvertising,mediaand

entertainmentcompaniescangainacompetitiveedgewithAI:

PERSONALIZEDEXPERIENCES

Creatingbespokecustomerexperiencesisacrucialcompetitiveedgeintoday’scrowdedmedialandscape.Byusingnatural

languageprocessingalgorithmstoextractinsightsfromtextualcontent,suchassocialmediapostsandemails,companiescanswiftlyidentifycustomerbehaviors,sentimentsandtrends.Thiscomprehensiveanalysisempowerscompaniestocrafthighly

targetedandrelevantcontentmorequickly,aswellasfine-tunecontentrecommendations.Asaresult,eachcustomerenjoysamoreengagingandsatisfyingexperience,leadingtoincreasedcustomerloyalty.

ADVERTISINGREVENUEOPTIMIZATION

Optimizingadspendisaperpetualchallengeforbrand

advertisersandadagencies.GenAIhasthepotentialtoboostadrevenuebyenablingprecisetargetingandpersonalized

campaignsthroughthethoroughanalysisofvastconsumer

data.Thistechnologyallowsadvertiserstocustomize

messagingtoindividualpreferencesanddemographics,

ensuringadsarehighlyrelevantandengaging.Additionally,genAIcanautomateadcreationandstreamlineprocesses,reducingcostsandfacilitatingthedeliveryofeffectiveadsatscale.

ULTIMATEGUIDETODATA+AIFORINDUSTRIES2025MediaandEntertainment|12

IPANDASSETPROTECTION

Safeguardingintellectualproperty(IP)andassetsisvital

forpreservingtheworkandreputationsofartists,creatives,

brandsandcompanies.Usingadvancedalgorithms,genAIandmachinelearningcanmonitordigitalplatformsanddistributionchannelstodetectunauthorizeduseofIPrightsinnearreal

time.Thisallowscompaniestotakeproactivemeasuressuchasissuingtakedownnotices.Additionally,itempowerscompaniestodevelopcomprehensivedigitalrightsmanagementsolutionstosecurecontentdistributionandmonetizationtohelp

combatcostlypiracy.GenAIcanalsoenhancetraditionalassetprotectionmethodsbyanalyzingpatternsindigitalcontent

tohelpidentifycopyrightinfringement,plagiarismandcontentmanipulation.

TheAImediaandentertainmentmarketwillbeworth

$196billionby2033

.

—Market.us

CUSTOMERSUCCESSSTORIES

SYSTEM1

System1improvesteamefficiencywithSnowflakeCortexandSlackbotsolution

System1,aleaderinAI-drivendigitalmarketing,struggledwithsiloedinformationandinefficientcommunication

acro

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论