2025届广东省汕头金山中学高三第二次“联测促改”活动数学试题试卷_第1页
2025届广东省汕头金山中学高三第二次“联测促改”活动数学试题试卷_第2页
2025届广东省汕头金山中学高三第二次“联测促改”活动数学试题试卷_第3页
2025届广东省汕头金山中学高三第二次“联测促改”活动数学试题试卷_第4页
2025届广东省汕头金山中学高三第二次“联测促改”活动数学试题试卷_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省汕头金山中学高三第二次“联测促改”活动数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中的系数为()A.-30 B.-40 C.40 D.502.已知数列为等比数列,若,且,则()A. B.或 C. D.3.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度4.某四棱锥的三视图如图所示,则该四棱锥的表面积为()A.8 B. C. D.5.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是()A.12 B.16 C.20 D.86.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是()(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A.3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B.4月份仅有三个城市居民消费价格指数超过102C.四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D.仅有天津市从年初开始居民消费价格指数的增长呈上升趋势7.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.88.已知复数在复平面内对应的点的坐标为,则下列结论正确的是()A. B.复数的共轭复数是C. D.9.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.110.已知三棱柱()A. B. C. D.11.在展开式中的常数项为A.1 B.2 C.3 D.712.在区间上随机取一个数,使直线与圆相交的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为椭圆在第一象限上的点,则的最小值为________.14.已知向量,,满足,,,则的取值范围为_________.15.(5分)已知,且,则的值是____________.16.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)18.(12分)已知函数,.(1)若不等式对恒成立,求的最小值;(2)证明:.(3)设方程的实根为.令若存在,,,使得,证明:.19.(12分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.20.(12分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点(1)求椭圆的方程;(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.21.(12分)己知圆F1:(x+1)1+y1=r1(1≤r≤3),圆F1:(x-1)1+y1=(4-r)1.(1)证明:圆F1与圆F1有公共点,并求公共点的轨迹E的方程;(1)已知点Q(m,0)(m<0),过点E斜率为k(k≠0)的直线与(Ⅰ)中轨迹E相交于M,N两点,记直线QM的斜率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由.22.(10分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况.现分别从、、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米):组组组假设所有植株的生长情况相互独立.从、、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为.从、、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、、(单位:厘米).这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小.(结论不要求证明)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.2.A【解析】

根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.3.A【解析】

由的最小正周期是,得,即,因此它的图象向左平移个单位可得到的图象.故选A.考点:函数的图象与性质.【名师点睛】三角函数图象变换方法:4.D【解析】

根据三视图还原几何体为四棱锥,即可求出几何体的表面积.【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.5.A【解析】

先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.【详解】先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.故选:A【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.6.D【解析】

采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势故选:D【点睛】本题考查图表的认识,审清题意,细心观察,属基础题.7.B【解析】

根据题意得到,,解得答案.【详解】,,解得或(舍去).故.故选:.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.8.D【解析】

首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.9.B【解析】

,选B.10.C【解析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=11.D【解析】

求出展开项中的常数项及含的项,问题得解。【详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。12.C【解析】

根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得所以相交的概率,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

利用椭圆的参数方程,将所求代数式的最值问题转化为求三角函数最值问题,利用两角和的正弦公式和三角函数的性质,以及求导数、单调性和极值,即可得到所求最小值.【详解】解:设点,,其中,,由,,,可设,导数为,由,可得,可得或,由,,可得,即,可得,由可得函数递减;由,可得函数递增,可得时,函数取得最小值,且为,则的最小值为1.故答案为:1.【点睛】本题考查椭圆参数方程的应用,利用三角函数的恒等变换和导数法求函数最值的方法,考查化简变形能力和运算能力,属于难题.14.【解析】

设,,,,由,,,根据平面向量模的几何意义,可得A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,为的距离,利用数形结合求解.【详解】设,,,,如图所示:因为,,,所以A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,则即的距离,由图可知,.故答案为:【点睛】本题主要考查平面向量的模及运算的几何意义,还考查了数形结合的方法,属于中档题.15.【解析】

由于,且,则,得,则.16.1元【解析】设分别生产甲乙两种产品为桶,桶,利润为元

则根据题意可得目标函数,作出可行域,如图所示作直线然后把直线向可行域平移,

由图象知当直线经过时,目标函数的截距最大,此时最大,

由可得,即此时最大,

即该公司每天生产的甲4桶,乙4桶,可获得最大利润,最大利润为1.【点睛】本题考查用线性规划知识求利润的最大值,根据条件建立不等式关系,以及利用线性规划的知识进行求解是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)证明见解析.【解析】

(1)求出函数的定义域为,,分和两种情况讨论,分析函数的单调性,求出函数的最大值,即可得出关于实数的不等式,进而可求得实数的取值范围;(2)利用导数分析出函数在上递增,在上递减,可得出,由,构造函数,证明出,进而得出,再由函数在区间上的单调性可证得结论.【详解】(1)函数的定义域为,且.当时,对任意的,,此时函数在上为增函数,函数为最大值;当时,令,得.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,函数在处取得极大值,亦即最大值,即,解得.综上所述,实数的取值范围是;(2)当时,,定义域为,,当时,;当时,.所以,函数的单调递增区间为,单调递减区间为.由于函数有两个零点、且,,,构造函数,其中,,令,,当时,,所以,函数在区间上单调递减,则,则.所以,函数在区间上单调递减,,,即,即,,且,而函数在上为减函数,所以,,因此,.【点睛】本题考查利用函数的最值求参数,同时也考查了利用导数证明函数不等式,利用所证不等式的结构构造新函数是解答的关键,考查推理能力与计算能力,属于难题.18.(1)(2)证明见解析(3)证明见解析【解析】

(1)由题意可得,,令,利用导数得在上单调递减,进而可得结论;(2)不等式转化为,令,,利用导数得单调性即可得到答案;(3)由题意可得,进而可将不等式转化为,再利用单调性可得,记,,再利用导数研究单调性可得在上单调递增,即,即,即可得到结论.【详解】(1),即,化简可得.令,,因为,所以,.所以,在上单调递减,.所以的最小值为.(2)要证,即.两边同除以可得.设,则.在上,,所以在上单调递减.在上,,所以在上单调递增,所以.设,因为在上是减函数,所以.所以,即.(3)证明:方程在区间上的实根为,即,要证,由可知,即要证.当时,,,因而在上单调递增.当时,,,因而在上单调递减.因为,所以,要证.即要证.记,.因为,所以,则..设,,当时,.时,,故.且,故,因为,所以.因此,即在上单调递增.所以,即.故得证.【点睛】本题考查函数的单调性、最值、函数恒成立问题,考查导数的应用,转化思想,构造函数研究单调性,属于难题.19.(1);(2)见解析.【解析】

(1)分、、三种情况解不等式,综合可得出原不等式的的解集;(2)利用绝对值三角不等式可求得函数的最小值为,进而可得出,再将代数式与相乘,利用基本不等式求得的最小值,进而可证得结论成立.【详解】(1)当时,由,得,即,解得,此时;当时,由,得,即,解得,此时;当时,由,得,即,解得,此时.综上所述,不等式的解集为;(2),当且仅当时取等号,所以,.所以,当且仅当,即,时等号成立,所以.所以,即.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式成立,涉及绝对值三角不等式的应用,考查运算求解能力,属于中等题.20.(1)(2)或【解析】

(1)由已知条件得到方程组,解得即可;(2)由题意得直线的斜率存在,设直线方程为,联立直线与椭圆方程,消元、列出韦达定理,由得到的范围,设弦中点坐标为则,所以在轴上方,只需位于内(含边界)就可以,即满足,得到不等式组,解得即可;【详解】解:(1)由已知椭圆右焦点坐标为,离心率为,,,所以椭圆的标准方程为;(2)由题意得直线的斜率存在,设直线方程为联立,消元整理得,,由,解得设弦中点坐标为,所以在轴上方,只需位于内(含边界)就可以,即满足,即,解得或【点睛】本题考查了椭圆的定义标准方程及其性质,直线与椭圆的综合应用,考查了推理能力与计算能力,属于中档题.21.(1)见解析,(1)存在,【解析】

(1)求出圆和圆的圆心和半径,通过圆F1与圆F1有公共点求出的范围,从而根据可得点的轨迹,进而求出方程;(1)过点且斜率为的直线方程为,设,,联立直线方程和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论