版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵东县第三中学2025年高三年级下学期期中考试数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则()A. B. C. D.2.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间3.关于函数在区间的单调性,下列叙述正确的是()A.单调递增 B.单调递减 C.先递减后递增 D.先递增后递减4.函数图像可能是()A. B. C. D.5.已知展开式中第三项的二项式系数与第四项的二项式系数相等,,若,则的值为()A.1 B.-1 C.8l D.-816.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金()A.多1斤 B.少1斤 C.多斤 D.少斤7.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间110,120内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的个数为()A.4 B.3 C.2 D.18.已知,,,是球的球面上四个不同的点,若,且平面平面,则球的表面积为()A. B. C. D.9.已知菱形的边长为2,,则()A.4 B.6 C. D.10.公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为()A.米 B.米C.米 D.米11.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A. B. C. D.512.点为不等式组所表示的平面区域上的动点,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知x,y>0,且,则x+y的最小值为_____.14.在中,,,则_________.15.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.16.的展开式中,的系数为_______(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:18.(12分)已知在中,内角所对的边分别为,若,,且.(1)求的值;(2)求的面积.19.(12分)如图,四棱锥P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)证明;AC⊥BP;(Ⅱ)求直线AD与平面APC所成角的正弦值.20.(12分)已知实数x,y,z满足,证明:.21.(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项.(1)证明:数列是等差数列;(2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有.22.(10分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.(1)证明:;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
利用诱导公式以及二倍角公式,将化简为关于的形式,结合终边所在的直线可知的值,从而可求的值.【详解】因为,且,所以.故选:C.【点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解值的两种方法:(1)分别求解出的值,再求出结果;(2)将变形为,利用的值求出结果.2、D【解析】
可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题3、C【解析】
先用诱导公式得,再根据函数图像平移的方法求解即可.【详解】函数的图象可由向左平移个单位得到,如图所示,在上先递减后递增.故选:C【点睛】本题考查三角函数的平移与单调性的求解.属于基础题.4、D【解析】
先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.5、B【解析】
根据二项式系数的性质,可求得,再通过赋值求得以及结果即可.【详解】因为展开式中第三项的二项式系数与第四项的二项式系数相等,故可得,令,故可得,又因为,令,则,解得令,则.故选:B.【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.6、C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列则由等差数列的性质得,故选C7、C【解析】
利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可.【详解】①甲同学的成绩折线图具有较好的对称性,最高130分,平均成绩为低于130分,①错误;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[110,120]内,②正确;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确;④乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故④不正确.故选:C.【点睛】本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题.8、A【解析】
由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.【详解】如图,取BC中点G,连接AG,DG,则,,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半径,球O的表面积为.故选A.【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题.9、B【解析】
根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果.【详解】如图所示,菱形形的边长为2,,∴,∴,∴,且,∴,故选B.【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..10、D【解析】
根据题意,是一个等比数列模型,设,由,解得,再求和.【详解】根据题意,这是一个等比数列模型,设,所以,解得,所以.故选:D【点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.11、D【解析】
根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【详解】依题意得,,,因此该双曲线的离心率.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.12、B【解析】
作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论.【详解】不等式组作出可行域如图:,,,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,,.故选:.【点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
处理变形x+y=x()+y结合均值不等式求解最值.【详解】x,y>0,且,则x+y=x()+y1,当且仅当时取等号,此时x=4,y=2,取得最小值1.故答案为:1【点睛】此题考查利用均值不等式求解最值,关键在于熟练掌握均值不等式的适用条件,注意考虑等号成立的条件.14、【解析】
先由题意得:,再利用向量数量积的几何意义得,可得结果.【详解】由知:,则在方向的投影为,由向量数量积的几何意义得:,∴故答案为【点睛】本题考查了投影的应用,考查了数量积的几何意义及向量的模的运算,属于基础题.15、【解析】
首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.【详解】根据“钟型验证码”中间数字最大,然后向两边对称递减,所以中间的数字可能是.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.所以该验证码的中间数字是7的概率为.故答案为:【点睛】本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.16、60【解析】
根据二项式定理展开式通项,即可求得的系数.【详解】因为,所以,则所求项的系数为.故答案为:60【点睛】本题考查了二项展开式通项公式的应用,指定项系数的求法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)递减区间为(-1,0),递增区间为(2)见解析【解析】
(1)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为,构造函数,并求得,由函数单调性及零点存在定理可知存在唯一的,使得成立,因而求得函数的最小值,由对数式变形化简可证明,即成立,原不等式得证.【详解】(1)函数可求得,则解得所以,定义域为,在单调递增,而,∴当时,,单调递减,当时,,单调递增,此时是函数的极小值点,的递减区间为,递增区间为(2)证明:当时,,因此要证当时,,只需证明,即令,则,在是单调递增,而,∴存在唯一的,使得,当,单调递减,当,单调递增,因此当时,函数取得最小值,,,故,从而,即,结论成立.【点睛】本题考查了由函数极值求参数,并根据导数判断函数的单调区间,利用导数证明不等式恒成立,构造函数法的综合应用,属于难题.18、(1);(2)【解析】
(1)将代入等式,结合正弦定理将边化为角,再将及代入,即可求得的值;(2)根据(1)中的值可求得和,进而可得,由三角形面积公式即可求解.【详解】(1)由,得,由正弦定理将边化为角可得,∵,∴,∴,化简可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【点睛】本题考查了正弦定理在边角转化中的应用,正弦差角公式的应用,三角形面积公式求法,属于基础题.19、(Ⅰ)见解析(Ⅱ).【解析】
(I)取的中点,连接,通过证明平面得出;(II)以为原点建立坐标系,求出平面的法向量,通过计算与的夹角得出与平面所成角.【详解】(I)证明:取AC的中点M,连接PM,BM,∵AB=BC,PA=PC,∴AC⊥BM,AC⊥PM,又BM∩PM=M,∴AC⊥平面PBM,∵BP⊂平面PBM,∴AC⊥BP.(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,∴∠ABC=120°,∵AB=BC=1,∴AC,BM,∴AC⊥CD,又AC⊥BM,∴BM∥CD.∵PA=PC,CM,∴PM,∵PB,∴cos∠BMP,∴∠PMB=120°,以M为原点,以MB,MC的方向为x轴,y轴的正方向,以平面ABCD在M处的垂线为z轴建立坐标系M﹣xyz,如图所示:则A(0,,0),C(0,,0),P(,0,),D(﹣1,,0),∴(﹣1,,0),(0,,0),(,,),设平面ACP的法向量为(x,y,z),则,即,令x得(,0,1),∴cos,,∴直线AD与平面APC所成角的正弦值为|cos,|.【点睛】本题考查异面直线垂直的证明,考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意向量法的合理使用,难度一般.20、见解析【解析】
已知条件,需要证明的是,要想利用柯西不等式,需要的值,发现,则可以用柯西不等式.【详解】,.由柯西不等式得,..
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《数字化车间在模具制造企业中的设备健康管理技术研究》教学研究课题报告
- 机构研究报告-折扣零售行业市场前景及投资研究报告:奥特莱斯城市奥莱综合奥莱进阶
- 融合人工智能的初中跨学科教学评价模式研究与实践教学研究课题报告
- 2026年永德县妇幼保健院公开招聘收费室岗位1名备考题库及1套参考答案详解
- 儿童Peutz - Jeghers综合征内镜术后并发症处理及外科手术时机选择
- 2025年银发旅游社交活动组织报告
- 2025秋沪教版七年级上册期末音乐测试卷(三套含答案)
- 2026年河北正定师范高等专科学校单招职业技能笔试备考试题及答案解析
- 2026年华中师范大学智能健康交叉科学中心公开招聘主任助理备考题库及完整答案详解一套
- 2025年航空机器人技术五年进展:导航精度报告
- 酒店(旅馆)设计案例分析
- 软启动培训课件
- 重庆科技大学《高等数学I》2025 - 2026学年第一学期期末试卷
- 索尼摄像机DCR-SR47E中文说明书
- 军事教材教案编写规范与范例解析
- 《2025新版检验检测机构管理评审报告》
- 图解新《安全生产法》2021完整版
- 2025年《公共部门人力资源管理》试题含答案
- 2025年长沙市中考数学试卷真题(含答案解析)
- 2025秋人教版(2024)七年级上册地理课件 2.3 【跨学科主题学习】美化校园
- 幼儿园冬季恶劣天气教育
评论
0/150
提交评论