湖南省雅礼教育集团2023−2024学年高一下学期4月月考 数学试卷(含解析)_第1页
湖南省雅礼教育集团2023−2024学年高一下学期4月月考 数学试卷(含解析)_第2页
湖南省雅礼教育集团2023−2024学年高一下学期4月月考 数学试卷(含解析)_第3页
湖南省雅礼教育集团2023−2024学年高一下学期4月月考 数学试卷(含解析)_第4页
湖南省雅礼教育集团2023−2024学年高一下学期4月月考 数学试卷(含解析)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省雅礼教育集团2023−2024学年高一下学期4月月考数学试卷一、单选题(本大题共8小题)1.命题“,”的否定为(

)A., B.,C., D.,2.设复数(其中a,,i为虚数单位),则“”是“z为纯虚数”的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若角的终边上有一点,则a的值为(

)A. B. C. D.4.函数在区间上的图象大致为(

)A. B.C. D.5.把按斜二测画法得到,如图所示,其中,,那么是一个(

)A.等边三角形 B.直角三角形C.等腰三角形 D.三边互不相等的三角形6.已知实数满足,设,则(

)A. B. C. D.7.已知正三角形ABC的边长为4,点P在边BC上,则的最小值为(

)A.2 B.1 C. D.8.在中,为边上一点,,且的面积为,则(

)A. B. C. D.二、多选题(本大题共3小题)9.下列命题不正确的是(

).A.棱台的侧棱长可以不相等,但上、下底面一定相似B.有一个面是多边形,其余各面都是三角形的几何体是棱锥C.若,直线平面,直线平面,且,则D.若条直线中任意两条共面,则它们共面10.已知是复数,且为纯虚数,则(

)A.B.C.在复平面内对应的点在实轴上D.的最大值为11.已知锐角三个内角A,B,C的对应边分别为a,b,c,且,c=2.则下列结论正确的是(

)A.的面积最大值为2 B.的取值范围为C. D.的取值范围为三、填空题(本大题共3小题)12.已知向量,且,则_________.13.已知,则的最小值为.14.已知,,若,或,则的取值范围是四、解答题(本大题共5小题)15.(1)已知正四棱锥的底面边长是6,侧棱长为5,求该正四棱锥的体积(2)如图(单位:cm),求下图中阴影部分绕AB旋转一周所形成的几何体的体积.

16.在中,角所对的边分别为,.(1)求的值;(2)若,点是的中点,且,求的面积.17.已知函数.(1)求函数在上的单调递减区间;(2)若在区间上恰有两个零点,,求的值.18.已知函数对任意实数m、n都满足等式,当时,,且.(1)判断的奇偶性;(2)判断的单调性,求在区间上的最大值;(3)是否存在实数a,对于任意的,,使得不等式恒成立.若存在,求出a的取值范围;若不存在,请说明理由.19.如果函数满足以下两个条件,我们就称为型函数.①对任意的,总有;②当时,总有成立.(1)记,求证:为型函数;(2)设,记,若是型函数,求的取值范围;(3)是否存在型函数满足:对于任意的,都存在,使得等式成立?请说明理由.

参考答案1.【答案】D【详解】因为全称量词命题的否定是存在量词命题,故命题“,”的否定为,.故选D.2.【答案】B【详解】由复数当时,复数为纯虚数,所以充分性不成立;反之:若复数为纯虚数,则成立,所以必要性成立,所以“”是“z为纯虚数”的必要不充分条件.故选:B.3.【答案】A【详解】因为角的终边上有一点,所以,又,所以,所以.故选:A4.【答案】A【详解】∵,即,∴为偶函数;又∵当时,则,故,∴;综上所述:A正确,B、C、D错误.故选:A.5.【答案】A【详解】根据斜二侧画法还原在直角坐标系的图形,如下图所示:由图得,,故为等边三角形,故选:A6.【答案】D【详解】因为,所以,又为减函数,所以,即,又,故,所以,故选D.7.【答案】D【详解】记,因为,所以.故选:D8.【答案】A【分析】由面积公式求出,即可得到为等腰三角形,则,在中由正弦定理求出,即可求出,最后由利用两角差的正弦公式计算可得.【详解】因为,解得,所以为等腰三角形,则,在中由正弦定理可得,即,解得,因为,所以为锐角,所以,所以.故选:A9.【答案】BD【详解】对于A,棱台的上、下底面相似,但侧棱长不一定相等,故A正确;对于B,棱锥的定义为:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫棱锥.而有一个面是多边形,其余各面都是三角形的几何体也可能是组合体,与棱锥的定义相矛盾,故B错误;对于C,因为直线平面,直线平面,且,所以面,且面,又,所以,故C正确;对于D,反例:正方体的侧棱任意两条都共面,但这4条侧棱却不共面,故D错误.故选:BD.10.【答案】ABD【分析】先设,,代入化简,根据为纯虚数得出;再根据向量模的计算方法可判断选项A,根据共轭复数和复数乘法运算可判断选项B;根据复数的几何意义可判断选项C和D.【详解】设,.则.因为为纯虚数,所以,即.所以,,故选项A正确,选项B正确.因为复数在复平面内对应的点为,所以复数在复平面内对应的点均不在实轴上,故选项C错误;因为的几何意义为表示点到点,所以最大值为,故选项D正确.故选ABD.11.【答案】BCD【详解】A选项,由余弦定理得,即,所以,由基本不等式得,当且仅当时,等号成立,此时为锐角三角形,满足要求,故,解得,故,A错误;B选项,由正弦定理得,所以,,因为为锐角三角形,所以,,解得,则,,,B正确;C选项,,由正弦定理得,C正确;D选项,,由C选项可知,所以,故,D正确.故选:BCD12.【答案】【详解】因为,所以,解得,所以,所以,所以.故答案为:13.【答案】/【详解】因为,则,可得,即,且,整理得,又因为,当且仅当时,等号成立,即,整理得,解得或(舍去),所以的最小值为,当且仅当时取等号.故答案为:14.【答案】【详解】首先看没有参数,从入手,显然时,;当时,,而对,或成立即可,故只要时,(*)恒成立即可,当时,,不符合(*)式,舍去;当时,由得,并不对成立,舍去;当时,由,注意,故,所以,即,又,故,所以又,故,综上,的取值范围是,故答案为:.15.【答案】(1);(2)【详解】解:(1)如图,正四棱锥中,设为与交点,所以由正四棱锥的性质得平面,所以,因为正四棱锥的底面边长是6,侧棱长为5,所以,,所以,即正四棱锥的高为所以,该正四棱锥的体积为

(2)根据题意,图中阴影部分绕AB旋转一周所形成的几何体为圆台中挖去一个半径为的半球构成的组合体.因为圆台的体积为,半球的体积为,所以,所求几何体的体积为.16.【答案】(1);(2).【详解】(1)由正弦定理得:,,则,,不等于0,.(2),,所以,联立,,在中,由余弦定理得:①在中,由余弦定理得:②由①②式得:故,.17.【答案】(1)(2)【详解】(1)对于,令,解得,因为,当时,;当时,;所以在上的单调递减区间为.(2)因为在区间上恰有2个零点,所以在有两个根,令,解得,所以当时,函数图像的对称轴为,所以,则,又,则,所以.18.【答案】(1)奇函数;(2)为上的减函数;在上的最大值为6;(3)存在,实数a的取值范围为.【详解】(1)取,则,∴,取,,则,∴对任意恒成立,∴为奇函数;(2)任取且,则,因为,故,令,则有,即,∵时,,故时,,∴,∴.故为上的减函数.∴,,∵,,令,则,故,因为令,则,即,由(1)知:为奇函数,故,故,解得:,故,故在上的最大值为6;(3)∵在上是减函数,∴,∵,对所有,恒成立.∴,恒成立;即,恒成立,令,则,即,解得:或.∴实数a的取值范围为.19.【答案】(1)证明见解析;(2);(3)存在,理由见解析.【分析】(1)证明函数满足型函数的定义即可;(2)根据是型函数,则由其满足条件①推出,再结合其满足条件②得关于b的不等式,利用构造函数,结合函数最值,即可求得答案;(3)举出具体函数,说明其满足型函数的定义,即可得结论.【详解】(1)当时,,当,,时,,,则,因为,所以,所以,所以为型函数.(2)当时,由得,当,,时,,,由,得,即,即,即,令,则对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论