




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新青岛版达标名校2025届初三下学期九月份统一联考数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.(2011•黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,则其中结论正确的个数是() A、2个 B、3个 C、4个 D、5个2.下列图形中,不是中心对称图形的是()A.平行四边形 B.圆 C.等边三角形 D.正六边形3.如图,的三边的长分别为20,30,40,点O是三条角平分线的交点,则等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶54.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a5.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A. B.C. D.6.下列函数是二次函数的是()A. B. C. D.7.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是()A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数8.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10109.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.① B.② C.③ D.④10.如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①;②当0<x<3时,;③如图,当x=3时,EF=;④当x>0时,随x的增大而增大,随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共7小题,每小题3分,满分21分)11.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;(2)∠APB=∠ACB的依据是_____.12.如图,为的直径,与相切于点,弦.若,则______.13.关于x的分式方程=2的解为正实数,则实数a的取值范围为_____.14.矩形ABCD中,AB=8,AD=6,E为BC边上一点,将△ABE沿着AE翻折,点B落在点F处,当△EFC为直角三角形时BE=_____.15.若数据2、3、5、3、8的众数是a,则中位数是b,则a﹣b等于_____.16.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.17.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.三、解答题(共7小题,满分69分)18.(10分)解不等式组:.19.(5分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.20.(8分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.21.(10分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?22.(10分)已知,如图1,直线y=x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.23.(12分)已知,,,斜边,将绕点顺时针旋转,如图1,连接.(1)填空:;(2)如图1,连接,作,垂足为,求的长度;(3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?24.(14分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;
②根据图示知,该函数图象的开口向上,
∴a>0;
故②正确;
③又对称轴x=-=1,
∴<0,
∴b<0;
故本选项错误;
④该函数图象交于y轴的负半轴,
∴c<0;
故本选项错误;
⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.
所以①②⑤三项正确.
故选B.2、C【解析】
根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.3、C【解析】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.【详解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,
∵三条角平分线交于点O,OF⊥AB,OE⊥AC,OD⊥BC,
∴OD=OE=OF,
∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
故选C.考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.4、A【解析】解:∵,∴反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数的图象上,∴a<b<0,故选A.5、B【解析】
根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.【详解】分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选B.此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.6、C【解析】
根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解.【详解】A.y=x是一次函数,故本选项错误;B.y=是反比例函数,故本选项错误;C.y=x-2+x2是二次函数,故本选项正确;D.y=右边不是整式,不是二次函数,故本选项错误.故答案选C.本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.7、C【解析】
利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.【详解】选项A、标号是2是随机事件;选项B、该卡标号小于6是必然事件;选项C、标号为6是不可能事件;选项D、该卡标号是偶数是随机事件;故选C.本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.8、D【解析】
根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a(1≤a<10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D.本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.9、A【解析】
根据题意得到原几何体的主视图,结合主视图选择.【详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.故取走的正方体是①.故选A.本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.10、C【解析】试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面积相等),选项①正确;∴C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0<x<2时,,选项②错误;当x=3时,,,即EF==,选项③正确;当x>0时,随x的增大而增大,随x的增大而减小,选项④正确,故选C.考点:反比例函数与一次函数的交点问题.二、填空题(共7小题,每小题3分,满分21分)11、①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换同弧所对的圆周角相等【解析】
(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.
(2)根据同弧所对的圆周角相等即可得出结论.【详解】(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案是:(2)∵,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.12、1【解析】
利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,,然后根据等腰三角形的性质求出的度数即可.【详解】∵与相切于点,∴AC⊥AB,∴,∴,∵,∴,,∵,∴,∴.故答案为1.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.13、a<2且a≠1【解析】
将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.【详解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解为正实数,∴2-a>0,且2-a≠1,解得:a<2且a≠1.故答案为:a<2且a≠1.分式方程的解.14、3或1【解析】
分当点F落在矩形内部时和当点F落在AD边上时两种情况求BE得长即可.【详解】当△CEF为直角三角形时,有两种情况:当点F落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点F处,∴∠AFE=∠B=90°,当△CEF为直角三角形时,只能得到∠EFC=90°,∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,设BE=x,则EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点F落在AD边上时,如图2所示.此时ABEF为正方形,∴BE=AB=1.综上所述,BE的长为3或1.故答案为3或1.本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论.15、2【解析】
将数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2;当样本数为偶数时,中位数为N/2与1+N/2的均值;众数是在一组数据中,出现次数最多的数据。根据定义即可算出.【详解】2、1、5、1、8中只有1出现两次,其余都是1次,得众数为a=1.2、1、5、1、8重新排列2、1、1、5、8,中间的数是1,中位数b=1.∴a﹣b=1-1=2.故答案为:2.中位数与众数的定义.16、.【解析】
延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=AF=1,∴FM==1,∵FP=FC=1,∴PM=MF-PF=1-1,∴点P到边AB距离的最小值是1-1.故答案为:1-1.本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P的位置.17、6【解析】根据题意得,2m=3×4,解得m=6,故答案为6.三、解答题(共7小题,满分69分)18、﹣4≤x<1【解析】
先求出各不等式的【详解】解不等式x﹣1<2,得:x<1,解不等式2x+1≥x﹣1,得:x≥﹣4,则不等式组的解集为﹣4≤x<1.考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19、路灯高CD为5.1米.【解析】
根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【详解】设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即,解得:x=5.1.经检验,x=5.1是原方程的解,∴路灯高CD为5.1米.本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.20、第二、三季度的平均增长率为20%.【解析】
设增长率为x,则第二季度的投资额为10(1+x)万元,第三季度的投资额为10(1+x)2万元,由第三季度投资额为10(1+x)2=14.4万元建立方程求出其解即可.【详解】设该省第二、三季度投资额的平均增长率为x,由题意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第二、三季度的平均增长率为20%.本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)2=14.4建立方程是关键.21、该工程队原计划每周修建5米.【解析】
找出等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.【详解】设该工程队原计划每周修建x米.由题意得:+1.整理得:x2+x﹣32=2.解得:x1=5,x2=﹣6(不合题意舍去).经检验:x=5是原方程的解.答:该工程队原计划每周修建5米.本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.22、(1)y=﹣x2﹣x+3;(2)点P的坐标为(﹣,1);(3)当AM+CN的值最大时,点D的坐标为(,).【解析】
(1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位置结合点B的横坐标可得出点B的坐标,根据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;(2)过点P作PE⊥x轴,垂足为点E,则△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;(3)连接AC交OD于点F,由点到直线垂线段最短可找出当AC⊥OD时AM+CN取最大值,过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,根据相似三角形的性质可设点D的坐标为(﹣3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论.【详解】(1)∵直线y=x+3与x轴、y轴分别交于A、C两点,∴点A的坐标为(﹣4,0),点C的坐标为(0,3).∵点B在x轴上,点B的横坐标为,∴点B的坐标为(,0),设抛物线的函数关系式为y=ax2+bx+c(a≠0),将A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣x+3;(2)如图1,过点P作PE⊥x轴,垂足为点E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x轴,CO⊥x轴,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴点P的坐标为(﹣,1);(3)如图2,连接AC交OD于点F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴当点M、N、F重合时,AM+CN取最大值,过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,∴,∴设点D的坐标为(﹣3t,4t).∵点D在抛物线y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合题意,舍去),t2=,∴点D的坐标为(,),故当AM+CN的值最大时,点D的坐标为(,).本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(﹣3t,4t).23、(1)1;(2);(3)x时,y有最大值,最大值.【解析】
(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 启迪心灵·塑造未来:中国十大教育片深度解析
- 小学入学第一课:筑牢安全防线
- 山东省郓城一中2025届高三下学期第一次阶段测试(4月)英语试题试卷含解析
- 汽车行业客服部年度工作总结
- 2025年公司项目负责人安全培训考试试题含答案(研优卷)
- 打字机创意课件
- 2025年中国氟氯西林市场调查研究报告
- 2025年中国干裙带菜市场调查研究报告
- 2025年中国多用型消防水泵接合器市场调查研究报告
- 2025年中国四面铲木栈板市场调查研究报告
- 市政道路工程关键施工技术工艺及工程项目实施的重点难点和解决方案
- 2023-2024公需科目(数字经济与驱动发展)考试题库及答案
- 中国银联招聘笔试题库2024
- 2024安徽制造业发展报告
- 财务机器人开发与应用实战 课件 任务5 E-mail人机交互自动化-2
- 【华为】通信行业:华为下一代铁路移动通信系统白皮书2023
- Python 程序设计智慧树知到期末考试答案章节答案2024年四川师范大学
- 城乡环卫保洁投标方案(技术标)
- 充值合同范本
- MSDS中文版(锂电池电解液)
- 《职业病防治法》知识考试题库160题(含答案)
评论
0/150
提交评论