




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
20.3.1方差一、选择题:1.下列说法正确的是(
)A.
方差越大,数据的波动越大
B.
某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.
旅客上飞机前的安检应采用抽样调查
D.
掷一枚硬币,正面一定朝上2.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩都为9环,方差分别为S甲2=0.56,S乙2=0.62,S丙2=0.39,S丁2=0.42,则四人中成绩最稳定的是(
)A.
甲
B.
乙
C.
丙
D.
丁3.2013年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟),则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是(
)成绩(个/分钟)140160169170177180人数111232A.
众数是177
B.
平均数是170
C.
中位数是173.5
D.
方差是1354.某数学兴趣小组6名成员通过一次数学竞赛进行组内评比,他们的成绩分别是89,92,91,93,96,91,则关于这组数据说法正确的有(
)A.
中位数是92.5
B.
平均数是92
C.
众数是96
D.
方差是55.数据1,2,3,4,5的方差为2,则3,5,7,9,11的方差为(
)A.
6
B.
7
C.
8
D.
96.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是(
)班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A.
八(2)班的总分高于八(1)班
B.
八(2)班的成绩比八(1)班稳定C.
八(2)班的成绩集中在中上游
D.
两个班的最高分在八(2)班7.两组数据如下图,设图(1)中数据的平均数为x1、方差为S12,图(2)中数据的平均数为x2A.
B.
C.
D.
8.若样本x1+1,x2+1,…,xn+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,xn+2,下列结论正确的是(
)A.
平均数为10,方差为2
B.
平均数为11,方差为3C.
平均数为11,方差为2
D.
平均数为12,方差为49.已知一组数据的方差为345,数据为:-1,0,3,5,x,那么x等于(
A.
-2或5.5
B.
2或-5.5
C.
4或11
D.
-4或-1110.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均数甲55149191135乙55151110135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大,上述结论正确的是(
)A.
①②③
B.
①②
C.
①③
D.
②③二、填空题:11.数据3,3,6,5,3的方差是________.12.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数x375350375350方差S12.513.52.45.4根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择________.13.一组数据的方差是,S2=110×[14.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为S甲2________
15.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:选手甲乙丙平均数9.39.39.3方差0.0260.0150.032则射击成绩最稳定的选手是________.(填“甲”“乙”“丙”中的一个)16.已知一组数据x1,x2,x3,平均数和方差分别是2,232x1–1,2x2–1,2x3–1的平均数和方差分别是________
,________。17.设x1,x2,…,xn平均数为x
,方差为S2
.若S2=0
,则x1,x2,…,x18.已知一组数据x1,x2,x3,x4,x5那么另一组数据3x1-2,3x2-2,3x319.为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示.若S甲2和S乙2分别表示甲、乙两块地苗高数据的方差,则S甲2________S乙2.20.八年2班组织了一次经典诵读比赛,甲乙两组各10人的比赛成绩如下表(10
分制):甲789710109101010乙10879810109109①甲组数据的中位数是________,乙组数据的众数是________;②计算乙组数据的平均数________方差________;③已知甲组数据的方差是1.4分2,则成绩较为整齐的是________.三、解答题:21.甲、乙两个电子厂在广告中都声称他们的某种电子产品在正常情况下的使用寿命都是5年.质检部门对这两家销售的产品的使用寿命进行了跟踪调查,统计结果如下:(单位:年)甲厂:3,4,5,6,7
乙厂:4,4,5,6,6(1)分别求出甲、乙两厂的该种电子产品在正常情况下的使用寿命的平均数和方差;(2)如果你是顾客,你会选购哪家电子厂的产品?说明理由.22.某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:(1)请你根据左图填写右表:销售公司平均数方差中位数众数甲9乙917.08(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力).23.某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如下的统计图.(1)你能利用该统计图求出平均数、众数和中位数中的哪些统计量?并直接写出结果;(2)小颖认为,若从该射击队中任意挑选四名队员,则必有一名队员的年龄是15岁.你认为她的判断正确吗?为什么?(3)小亮认为,可用该统计图求出方差.你认同他的看法吗?若认同,请求出方差;若不认同,请说明理由.24.某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图(1)该商场这段时间内A.B两种品牌冰箱月销售量的中位数分别为,;(2)计算两种品牌月销售量的方差,比较并说明该商场1~5月这两种品牌冰箱月销售量的稳定性.25.张老师要从班级里数学成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学联赛”为此,他对两位同学进行了辅导,并在辅导期间测验了10次,测验成绩如下表:第1次2345678910甲68807879788481837792乙86807583798085807775利用表中数据,解答下列问题:(1)填空完成下表:平均成绩中位数众数甲80乙8080(2)张老师从测验成绩表中,求得甲的方差S甲2=33.2(3)请你根据上面的信息,运用所学统计知识,帮张老师选拔出参加“全国数学联赛”的人选,并简要说明理由.26.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图象,直接比较得出s甲2和s乙2哪个大?(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选________参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.参考答案一、选择题:1.【答案】A【解析】【解答】A.方差越大,数据的波动越大,正确,符合题意;B.某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误,不符合题意;C.旅客上飞机前的安检应采用全面调查,错误,不符合题意;D.掷一枚硬币,正面不一定朝上,错误,,不符合题意。故答案为:A.【点拨】根据方差的意义,方差越大,数据的波动越大;概率的意义,某种彩票中奖概率为1%,是指中奖的概率很低,并不是说买100张彩票可能有1张中奖;全面调查一般适合于要求比较精确,重要的事件的调查,旅客上飞机前的安检就是比较重要的,故应采用全面调查;掷一枚硬币是随机事件,可能正面朝上,也可能反面朝上;即可一一判断。2.【答案】C【解析】【解答】解:∵方差越小数据组中的数据越稳定,而四名同学这10射击的方差中,最小的是S丙2=0.39,∴这四人中丙的成绩最稳定.故答案为:C.【点拨】根据方差越小数据组中的数据越稳定,比较甲、乙、丙、丁的方差即可求解.3.【答案】D【解析】解:A.这组数据中177出现次数最多,即众数为177,不符合题意;B.这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,不符合题意;C.∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5;不符合题意;D.方差=110[(140﹣170)2+(160﹣170)2+(169﹣170)2+2×(170﹣170)2+3×(177﹣170)2+2×(180﹣170)2]=134.8故答案为:D.【点拨】根据一组数据中出现次数最多的是众数可得众数为177,根据中位数的定义这种数据的中位数为第5个和6个数的平均数,根据加权平均数公式和方差求出平均数和方差即可求解.4.【答案】A【解析】解:这组数据按照从小到大的顺序排列为:89,91,91,92,93,96,则中位数为:91+922=91.5,故平均数为:89+91+92+93+966=92,故众数为:91,故C不符合题意;方差S2=16=143,故D故答案为:A.【点拨】平均数只要求出数据之和再除以总个数即可;对于中位数,按从小到大的顺序排列,只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数的平均数;对于众数是出现次数最多的数据;
根据方差公式计算方差.5.【答案】C【解析】解:根据方差的公式S2=1n[(x1故答案为:C【点拨】根据方差公式S2=6.【答案】D【解析】解:A.根据平均分可知八(1)班的总分为940分,八(2)班的总分为950分,故A不符合题意;B.八(2)班的方差小于八(1)班的方差,则八(2)班的成绩比较稳定,故B不符合题意;C.根据中位数和平均分可知八(2)班的成绩集中在中上游,故C不符合题意;D.最高分从这张表格上无法显示,故D符合题意;故答案为:D.【点拨】(1)根据两个班的平均分可求得各班的总分进行判断;(2)根据方差越小成绩越稳定可判断;(3)根据表中信息可知,八(2)班的中位数大于八(1)班的中位数,所以可知八(2)班的成绩集中在中上游;(4)从这张表格上无法确定最高分。7.【答案】B【考点】折线统计图,加权平均数及其计算,方差【解析】解:设图上的数据从下向上分别为0,1,2,3,4,x∴x根据图可知,图(1)的波动大,图(2)的波动小,∴S故答案为:B.【点拨】根据折线统计图的信息得到数据,然后根据平均数和方差公式求出各自的平均数和方差,比较即可得到结论.8.【答案】C【考点】平均数及其计算,方差【解析】解:由题知,x1+1+x2+1+x3+1+…+xn+1=10n,∴x1+x2+…+xn=10n﹣n=9nS12=1n[(x1+1﹣10)2+(x2+1﹣10)2+…+(xn+1﹣10)2]=1n[(x12+x22+x32+…+xn2)﹣18(x1+x2+x3+…+xn)+81n]=2,∴(x12+x22+x32+…+xn2)另一组数据的平均数=1n[x1+2+x2+2+…+xn+2]=1n[(x1+x2+x3+…+xn)+2n]=1n[9n+2n]=1n×11n=11,另一组数据的方差=1n[(x1+2﹣11)2+(x2+2﹣11)2+…+(xn+2=1n[(x12+x22+…+xn2)﹣18(x1+x2+…+xn)+81n]=1n[83n﹣18×9n+81n]=2.故答案为:【点拨】根据题意,只有利用平均数和方差的性质分别分析并代入题目的数字得出即可解出答案.9.【答案】A【解析】根据平均数和方差的公式列出关于x,m的方程求解.设数据的平均数为m,则m=1S整理得5m把①代入②,解得:x=-2或5.5.故选A.10.【答案】A【解析】解:∵甲=乙,∴①正确;∵乙的中位数为151,甲的中位数为149,∴乙班优秀的人数多于甲班优秀的人数②正确;∵S2甲>S2乙,∴甲班成绩的波动比乙班大,③正确;故选:A.【点拨】由表即可比较甲乙两班的平均数、中位数和方差.二、填空题:11.【答案】1.6【解析】解:∵x=∴S故答案为:1.6.【点拨】根据平均数公式求出该组数据的平均数,然后利用方差公式求出方差即可.12.【答案】丙【解析】解:由表中数据可知,丙的平均成绩和甲的平均成绩最高,而丙的方差也是最小的,成绩最稳定,所以应该选择:丙.故答案为:丙.【点拨】根据方差越小成绩越稳定,比较甲、乙、丙、丁的方差即可求解.13.【答案】10;4【解析】解:方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(xn﹣x)2],其中n是这个样本的容量,x¯是样本的平均数,所以本题中这个样本的容量是10,样本的平均数是4故答案为:10,4【点拨】根据方差的公式可得有10个数据,平均数是4.14.【答案】>【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S甲2>故答案为:>.【点拨】观察统计图可知乙地的平均气温波动比较小,即可得出答案。15.【答案】乙【解析】解:因为0.015<0.026<0.032,即乙的方差<甲的方差<丙的方差,因此射击成绩最稳定的选手是乙.故答案为:乙【点拨】比较三个选手的方差可得乙的方差最小,所以乙的成绩最稳定.16.【答案】3;8【解析】因为13(x1+x2+x3)=2,方差:13[(x1-x_)2+(x2-2)2+(x3-2)2则另一组数据2x1–1,2x2–1,2x3–1,新的平均数是13(2x1–1+2x2–1+2x3–1)=13(2x1+2x2+2x3新的方差是13[(2x1-1-3)2+(2x2–1-3)2+(2x2–1-3)2]=43[x1-2)2+(x2–2)2+(x2–2)2]=4×23【点拨】根据平均数,方差的公式计算即可.17.【答案】x1=x2=…=xn【解析】解:根据方差的意义知,方差为0时,这组数据没有波动,即x1=x2=…=xn【点拨】这组数据的方差为0,表示波动性为0,即没有波动,即可判断数据间的关系为相等.18.【答案】4;3【解析】由题意得x(x则16-2=4,方差为s215[9(【点拨】根据平均数公式和方差公式,计算即可。19.【答案】<【解析】解:由图可知,甲、乙两块地的苗高皆在12cm上下波动,但乙的波动幅度比甲大,∴则
S甲2【点拨】方差用来计算每一个变量(观察值)与总体均数之间的差异,所以从图像看苗高的波动幅度,可以大致估计甲、乙两块地苗高数据的方差。20.【答案】9.5;10;9;1;乙组.【解析】解:①把甲组的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙组成绩中10出现了4次,出现的次数最多,则乙组成绩的众数是10分;故答案为:9.5,10;②乙组的平均成绩是:(10×4+8×2+7+9×3)÷10=9,则方差是:110[③∵甲组成绩的方差是1.4,乙组成绩的方差是1,∴成绩较为整齐的是乙组.故答案为乙组.【点拨】把数据先按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据。根据题中的数据可求出甲组数据的中位数和乙组数据的众数;再根据平均数的公式和方差公式分别求出乙组数据的平均数和方差;然后根据甲、乙的方差比较大小,根据方差越小,成绩越整齐,即可得出结论。三、解答题:21.【答案】(1)解:x甲=15×(3+4+5+6+7)=5S2甲=15×[(3-5)2+(4-5)2+(5-5)2+(6-5)2+(7-5)2x乙=15×(4+4+5+6+6)=5S2乙=15×[(4-5)2+(4-5)2+(5-5)2+(6-5)2+(6-5)(2)解:由(1)知,甲厂、乙厂的该种电子产品在正常情况下的使用寿命平均数都是5年,则甲厂方差>乙厂方差,选方差小的厂家的产品,因此应选乙厂的产品【解析】(1)平均数x-=1nx1(2)由(1)知,两家的平均数相同,根据方差越小越稳定可知,应选乙厂的产品。22.【答案】(1)解:销售公司平均数方差中位数众数甲95.297乙917.088(2)解:①甲、乙两个汽车销售公司去年一至十月份的销售平均数一样,都是9辆,但甲销售公司的方差较小,说明甲销售公司的销售情况更稳定。②从甲、乙两个汽车销售公司销售数量的折线图看,乙呈上升趋势,说明乙销售公司较有潜力。【解析】(1)根据折线统计图求出甲和乙的平均数、中位数、方差和众数;(2)根据方差越小数据越稳定可得甲的销售情况比较稳定,观察折线统计图看出乙呈上升趋势,说明乙的潜力大.23.【答案】(1)解:平均数=13×10%+14×10%+15×25%+16×20%+17×15%100%=15,众数为14,中位数为(2)解:判断错误.可能抽到13岁,14岁,16岁,17岁(3)解:可以.设有n个运动员,则S2=1n•[10%•n(13﹣15)2+30%•n(14﹣15)2+25%•n•(15﹣15)2+20%•n•(16﹣15)2+15%•n(17﹣15)2]=1.5【解析】(1)利用加权平均数公式求出平均数,根据众数、中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区教育中心委托管理及课程设置调整协议
- 共同承担赔偿协议书
- 金融权益授权协议书
- 附带民事赔偿协议书
- 餐饮异地投资协议书
- 餐饮档口联营协议书
- 护理工作院感防控体系构建
- 酒店装饰装修协议书
- 重庆售房合同协议书
- 销售目标考核协议书
- 四川省2025届高三第二次联合测评-英语试卷+答案
- 2025瑞典语等级考试B1级模拟试卷
- 2025-2030中国贸易融资行业市场发展现状及发展趋势与投资战略研究报告
- 2024年自治区文化和旅游厅所属事业单位招聘工作人员考试真题
- 法院辅警笔试题及答案
- 雇保姆看孩子合同协议
- (四模)长春市2025届高三质量监测(四)语文试卷(含答案详解)
- 《小米营销策略》课件
- 2024年江西省三支一扶考试真题
- 2025年小学语文教师实习工作总结模版
- 2024焊接工程师资格证书试题及答案指南
评论
0/150
提交评论