内蒙古电子信息职业技术学院《编排设计》2023-2024学年第二学期期末试卷_第1页
内蒙古电子信息职业技术学院《编排设计》2023-2024学年第二学期期末试卷_第2页
内蒙古电子信息职业技术学院《编排设计》2023-2024学年第二学期期末试卷_第3页
内蒙古电子信息职业技术学院《编排设计》2023-2024学年第二学期期末试卷_第4页
内蒙古电子信息职业技术学院《编排设计》2023-2024学年第二学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页内蒙古电子信息职业技术学院《编排设计》

2023-2024学年第二学期期末试卷题号一二三四总分得分一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的目标计数任务,例如统计图像中物体的数量。假设要计算一张果园图片中苹果的数量,以下关于目标计数方法的描述,正确的是:()A.基于传统的图像分割和对象识别方法可以准确快速地完成目标计数B.深度学习中的回归模型不适合用于目标计数任务C.目标的大小、形状和分布对计数结果没有影响D.结合深度学习的密度估计方法能够有效地实现目标计数2、在计算机视觉的人脸识别任务中,需要应对姿态、表情和光照等变化。假设要构建一个能够在不同环境下准确识别人脸的系统,以下哪种人脸识别方法在处理这些变化时具有更高的准确性和鲁棒性?()A.基于特征点的人脸识别B.基于模板匹配的人脸识别C.基于深度学习的人脸识别D.基于几何形状的人脸识别3、在计算机视觉的图像去模糊任务中,需要恢复由于相机抖动或物体运动导致的模糊图像。假设一张夜景照片由于长时间曝光而模糊,同时存在噪声和低光照条件。以下哪种图像去模糊算法在处理这种情况时效果较好?()A.盲去卷积算法B.基于正则化的去模糊算法C.深度学习的去模糊模型D.频域去模糊方法4、在计算机视觉的图像增强任务中,旨在改善图像的质量。假设一张低光照条件下拍摄的照片需要增强。以下关于图像增强方法的描述,哪一项是错误的?()A.可以通过直方图均衡化方法增强图像的对比度B.基于滤波的方法能够去除图像中的噪声,同时增强细节C.图像增强可以无限制地提高图像的质量,不存在过度增强的问题D.深度学习中的生成对抗网络(GAN)也可以用于图像增强5、计算机视觉在自动驾驶领域发挥着重要作用。假设一辆自动驾驶汽车正在道路上行驶,需要识别各种交通标志、车辆和行人。以下关于自动驾驶中计算机视觉的描述,哪一项是不正确的?()A.计算机视觉可以通过摄像头实时获取道路信息,为车辆的决策和控制提供依据B.它能够准确识别不同光照和天气条件下的交通对象,不受任何干扰C.深度学习算法在自动驾驶的计算机视觉中被广泛应用,用于目标检测和语义分割D.计算机视觉需要与其他传感器(如雷达、激光雷达)的数据融合,以提高感知的可靠性6、计算机视觉中的姿态估计任务是估计人体或物体在三维空间中的姿态。假设要估计一个人体模特的姿态。以下关于姿态估计的描述,哪一项是不正确的?()A.可以通过关键点检测和关节角度计算来估计人体姿态B.深度学习中的卷积神经网络可以直接预测人体姿态的参数C.姿态估计在虚拟现实和增强现实等应用中具有重要作用D.姿态估计的结果总是非常准确,不受人体遮挡和复杂动作的影响7、计算机视觉在无人驾驶飞行器(UAV)中的应用可以实现自主导航和环境感知。假设一个UAV需要在复杂的环境中飞行并避开障碍物。以下关于计算机视觉在UAV中的描述,哪一项是错误的?()A.可以通过视觉传感器获取周围环境的信息,包括地形、建筑物和其他障碍物B.能够实时分析图像,计算与障碍物的距离和相对速度,为飞行决策提供依据C.计算机视觉在UAV中的应用完全不需要与其他传感器(如惯性测量单元)的数据融合D.可以利用深度学习算法进行端到端的飞行控制,实现自主飞行8、在计算机视觉的图像分割任务中,假设要将一张医学图像中的病变区域准确分割出来。以下关于图像分割方法的描述,正确的是:()A.基于阈值的分割方法简单高效,适用于所有类型的医学图像分割B.区域生长法能够根据像素的相似性进行分割,但容易受到噪声的影响C.图割算法在处理复杂的图像结构时表现不佳,难以得到准确的分割结果D.深度学习中的全卷积网络(FCN)在图像分割中无法处理不同大小的病变区域9、在计算机视觉的图像风格迁移任务中,将一张图像的风格应用到另一张图像上。假设要将一幅油画的风格迁移到一张照片上,以下关于图像风格迁移方法的描述,正确的是:()A.基于手工特征提取和风格转换的方法能够实现自然逼真的风格迁移B.深度学习中的生成对抗网络(GAN)在风格迁移中无法生成多样化的风格效果C.图像的内容和风格可以完全独立地进行处理,互不影响D.考虑图像的局部和全局特征以及语义信息能够提升风格迁移的质量10、计算机视觉在自动驾驶领域有着至关重要的应用。假设一辆自动驾驶汽车正在道路上行驶,需要识别各种交通标志和障碍物。以下关于自动驾驶中计算机视觉任务的描述,正确的是:()A.只需对前方物体进行简单的图像分类,就能实现安全的自动驾驶B.准确的目标检测和语义分割对于理解复杂的道路场景至关重要C.计算机视觉在自动驾驶中作用不大,主要依靠其他传感器如雷达D.对于交通标志的识别,颜色信息比形状和图案信息更重要11、在计算机视觉的人物姿态估计任务中,需要确定图像中人物的关节位置和姿态。假设要开发一个用于健身应用的姿态估计系统,以下关于模型训练数据的获取,哪一项是比较困难的?()A.从公开的数据集获取大量的人物姿态图像B.自己拍摄不同人群在各种健身动作下的图像C.利用合成数据生成多样化的人物姿态样本D.从社交媒体上收集用户分享的健身照片12、在计算机视觉中,图像超分辨率重建是提高图像分辨率和质量的技术。以下关于图像超分辨率重建的叙述,不正确的是()A.图像超分辨率重建可以通过插值、基于模型的方法或深度学习方法来实现B.深度学习方法在图像超分辨率重建中能够生成更清晰、逼真的细节C.图像超分辨率重建在医学图像、卫星图像和监控图像等领域有重要的应用D.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制13、计算机视觉中的手势识别用于理解人的手势动作。假设要在一个智能交互系统中实现实时准确的手势识别,以下关于手势识别方法的描述,正确的是:()A.基于传感器的手势识别方法能够精确获取手势的运动信息,但佩戴传感器不方便B.基于视觉的手势识别方法不受环境光照和背景的影响,识别稳定性高C.深度学习中的卷积神经网络在手势识别中无法处理复杂的手势变化和遮挡D.手势识别系统只要能够识别常见的几种手势,就能够满足大多数应用需求14、在计算机视觉的视频监控系统中,异常事件检测是重要功能之一。假设要在一个仓库的监控视频中检测出异常的人员活动或物品移动。以下哪种异常事件检测方法在处理这种大规模视频数据时能够更有效地发现异常?()A.基于规则的检测B.基于统计模型的检测C.基于深度学习的检测D.基于人工观察的检测15、计算机视觉中的光流估计用于计算图像中像素的运动信息。假设要估计一段视频中物体的运动速度和方向,以下关于光流估计方法的描述,正确的是:()A.传统的基于梯度的光流估计方法在复杂场景中能够准确计算光流B.深度学习中的光流估计网络不需要大量的标注数据进行训练C.光流估计的结果不受图像噪声和模糊的影响D.结合时空信息的深度学习光流估计方法能够提高估计的准确性和鲁棒性16、计算机视觉中的目标重识别任务旨在在不同的摄像头视角中识别出同一目标。假设要在一个大型商场的多个摄像头中寻找一个特定的人物。以下关于目标重识别的描述,哪一项是不准确的?()A.可以通过提取目标的特征,如颜色、形状和纹理,来进行重识别B.深度学习中的特征学习方法能够提高目标重识别的准确率C.目标重识别不受摄像头视角、光照和人物姿态变化的影响D.可以通过建立目标的特征库,快速在多个摄像头中进行匹配和搜索17、计算机视觉中的全景图像拼接是将多个视角的图像组合成一个全景图像。假设我们有一组用普通相机拍摄的场景照片,要拼接成一个无缝的全景图,以下哪个步骤对于拼接的质量影响最大?()A.特征点提取和匹配B.图像融合和过渡处理C.相机参数估计和校正D.图像的裁剪和缩放18、在一个基于计算机视觉的工业质量检测系统中,需要检测产品表面的微小缺陷,如划痕、凹坑等。由于缺陷的尺寸较小且形态多样,以下哪种图像处理算法可能对缺陷检测最为有效?()A.边缘检测算法B.形态学操作C.阈值分割算法D.霍夫变换19、计算机视觉中的医学图像分析对于疾病的诊断和治疗具有重要意义。以下关于医学图像分析的描述,不准确的是()A.可以对X光、CT、MRI等医学图像进行病灶检测、器官分割和疾病分类B.深度学习技术在医学图像分析中取得了显著的成果,但也面临数据标注困难和模型泛化能力不足的问题C.医学图像分析需要遵循严格的医学标准和伦理规范,确保结果的准确性和可靠性D.医学图像分析完全依赖于计算机视觉技术,医生的经验和专业知识不再重要20、对于视频中的异常检测任务,假设要在一段监控视频中检测出异常事件,如闯入、打斗等。以下哪种方法可能更有助于准确检测异常?()A.建立正常行为模型,对比检测异常B.只关注视频中的显著运动区域C.随机判断视频中的帧是否异常D.不进行异常检测,直接忽略异常事件21、计算机视觉中的图像超分辨率重建旨在提高图像的分辨率。假设要将一张低分辨率的卫星图像重建为高分辨率图像,以下关于模型训练的挑战,哪一项是最为突出的?()A.缺乏足够的高分辨率卫星图像数据用于训练B.模型的训练时间过长,难以在短时间内得到结果C.难以评估重建后的图像质量,没有明确的标准D.计算资源需求过大,普通计算机难以承受22、计算机视觉中的表情识别旨在识别图像或视频中人物的表情。假设要在一个情感分析系统中准确识别表情,以下关于表情识别方法的描述,正确的是:()A.基于几何特征的表情识别方法对表情的细微变化不敏感,识别准确率低B.基于纹理特征的表情识别方法能够很好地捕捉表情的局部特征,但容易受到光照影响C.深度学习中的卷积神经网络在表情识别中能够学习到全局和局部的特征,但对大规模数据集依赖严重D.表情识别系统只适用于正面清晰的人脸表情,对于侧脸和遮挡的表情无法识别23、计算机视觉中的姿态估计是确定物体在三维空间中的位置和方向。假设要估计一个机器人手臂的姿态,以下关于姿态估计方法的描述,哪一项是不正确的?()A.基于视觉的姿态估计可以通过分析物体在图像中的特征点来计算其姿态B.可以结合多个摄像头的图像信息,提高姿态估计的精度和鲁棒性C.姿态估计通常需要先对物体进行建模,然后通过匹配图像和模型来确定姿态D.姿态估计的结果总是非常准确,不受图像噪声、遮挡和物体形状变化的影响24、在计算机视觉的图像压缩任务中,需要在减少数据量的同时尽量保持图像的质量。假设要对一组高清图像进行压缩,以节省存储空间和传输带宽,同时要求解压后的图像能够满足一定的视觉要求。以下哪种图像压缩算法在这种情况下效果较好?()A.JPEG压缩算法B.PNG压缩算法C.WebP压缩算法D.BPG压缩算法25、计算机视觉中的场景理解是对整个图像场景的语义和结构进行分析和理解。以下关于场景理解的描述,不准确的是()A.场景理解需要综合考虑物体、空间关系、上下文信息等多个方面B.可以通过构建场景图来表示场景中的实体和关系,辅助场景理解C.场景理解在智能导航、虚拟环境构建和图像编辑等领域具有潜在的应用价值D.场景理解是一个已经完全解决的问题,不存在任何技术难题二、简答题(本大题共4个小题,共20分)1、(本题5分)说明计算机视觉中特征提取的作用和常见算法。2、(本题5分)简述计算机视觉在远程教育中的应用。3、(本题5分)计算机视觉中如何进行广告效果评估?4、(本题5分)简述图像的色彩融合方法。三、分析题(本大题共5个小题,共25分)1、(本题5分)分析某电影的预告片设计,探讨其精彩片段剪辑、音乐氛围营造、悬念设置如何吸引观众观看电影。2、(本题5分)以某游乐园的宣传海报设计中的色彩心理学为例,阐述其如何运用色彩心理学原理,吸引游客参与,提升宣传效果。3、(本题5分)研究某城市的地铁线路图设计,包括色彩选择、图标设计和信息布局,分析其如何提高乘客的使用便利性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论