




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市教育科研究院2025届数学八下期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC; B.∠A=∠B,∠C=∠D;C.AB=CD,AD=BC; D.AB=AD,CB=CD2.若,则的值为()A.1 B.-1 C.-7 D.73.以下说法正确的是()A.在367人中至少有两个人的生日相同;B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖;C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件;D.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是4.若式子有意义,则实数的取值范围是()A.且 B. C. D.5.使代数式的值不小于代数式的值,则应为(
)A.>17 B.≥17 C.<17 D.≥176.实数的绝对值是()A. B. C. D.17.已知y-3与x成正比例,且x=2时,y=7,则y与x的函数关系式为()A.y=2x+3 B.y=2x-3 C.y-3=2x+3 D.y=3x-38.一组数据、、、、、的众数是()A. B. C. D.9.已知一次函数的图象与轴交于点,且随自变量的增大而减小,则关于的不等式的解集是()A. B. C. D.10.下列命题是假命题的是()A.两直线平行,同位角相等 B.两组对角分别相等的四边形是平行四边形C.若,则 D.若,则11.如果一次函数y=kx+不经过第三象限,那么k的取值范围是()A.k<0 B.k>0 C.k≤0 D.k≥012.如图,在长方形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,连结EF,若AB=6,BC=4,则FD的长为()A.2 B.4 C. D.2二、填空题(每题4分,共24分)13.如果一个直角三角形的两边分别是6,8,那么斜边上的中线是___________.14.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为.15.确定一个的值为________,使一元二次方程无实数根.16.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=______.17.某次列车平均提速vkm/h.用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,设提速前列车的平均速度为xkm/h,则列方程为________.18.如果反比例函数的图象在当的范围内,随着的增大而增大,那么的取值范围是________.三、解答题(共78分)19.(8分)正方形的对角线相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形绕点怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.20.(8分)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段、分别表示父、子俩送票、取票过程中,离体育馆的路程(米)与所用时间(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)求点的坐标和所在直线的函数关系式(2)小明能否在比赛开始前到达体育馆21.(8分)如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长.22.(10分)某汽车销售公司经销某品牌款汽车,随着汽车的普及,其价格也在不断下降.今年5月份款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的款汽车,已知款汽车每辆进价为7.5万元,款汽车每辆进价为6万元,公司预计用不多于105万元且不少于102万元的资金购进这两款汽车共15辆,有几种进货方案?(3)按照(2)中两种汽车进价不变,如果款汽车每辆售价为8万元,为打开款汽车的销路,公司决定每售出一辆款汽车,返还顾客现金万元,要使(2)中所有的方案获利相同,值应是多少?23.(10分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0<t≤220.042<t≤430.064<t≤6150.306<t≤8a0.50t>85b请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?24.(10分)已知四边形为菱形,,,的两边分别与射线、相交于点、,且.(1)如图1,当点是线段的中点时,请直接写出线段与之间的数量关系;(2)如图2,当点是线段上的任意一点(点不与点、重合)时,求证:;(3)如图3,当点在线段的延长线上,且时,求线段的长.25.(12分)在平面直角坐标系xOy中,一次函数的图象经过点A(2,3)与点B(0,5).(1)求此一次函数的表达式;(2)若点P为此一次函数图象上一点,且△POB的面积为10,求点P的坐标.26.如图,矩形中,,画出面积不相等的2个菱形,使菱形的顶点都在矩形的边上.
参考答案一、选择题(每题4分,共48分)1、C【解析】
利用一组对边平行且相等的四边形为平行四边形可对A进行判定;根据两组对角分别相等的四边形为平行四边形可对B进行判定;根据两组对边分别相等的四边形为平行四边形可对C、D进行判定.【详解】A、若AB∥CD,AB=CD,则四边形ABCD为平行四边形,所以A选项错误;B、若∠A=∠C,∠B=∠D,则四边形ABCD为平行四边形,所以B选项错误;C、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以C选项正确;D、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以D选项错误.故选:C.【点睛】本题考查了平行四边形的判定,解题的关键是熟知平行四边形的判定定理.2、D【解析】
首先根据非负数的性质,可列方程组求出x、y的值,进而可求出x-y的值.【详解】由题意,得:,
解得;
所以x-y=4-(-3)=7;
故选:D.【点睛】此题主要考查非负数的性质:非负数的和为1,则每个非负数必为1.3、A【解析】
解:B.摸奖活动中奖是一个随机事件,因此,摸100次奖是否中奖也是随机事件;C.一副扑克牌中,随意抽取一张是红桃K,这是随机事件;D.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是故选A.【点睛】本题考查随机事件.4、A【解析】
根据分式及二次根式的性质即可求解.【详解】依题意得x≥0,x-2≠0,故且选A.【点睛】此题主要考查分式有意义的条件,解题的关键是熟知二次根式的性质及分母不为零.5、B【解析】【分析】不小于就是大于或等于的意思,根据此可列出不等式,然后根据不等式的基本性质求出解.【详解】依题意得:≥解此不等式,得≥17故选:B【点睛】本题考核知识点:解一元一次不等式.解题关键点:熟记不等式的性质.6、B【解析】
解:|故选B7、A【解析】
用待定系数法可求出函数关系式.【详解】y-1与x成正比例,即:y=kx+1,且当x=2时y=7,则得到:k=2,则y与x的函数关系式是:y=2x+1.故选:A.【点睛】此题考查了待定系数法求一次函数解析式,利用正比例函数的特点以及已知条件求出k的值,写出解析式.8、D【解析】
根据众数的定义进行解答即可.【详解】解:6出现了2次,出现的次数最多,则众数是6;故选:D.【点睛】此题考查了众数,众数是一组数据中出现次数最多的数.9、B【解析】
根据一次函数随自变量的增大而减小,再根据一次函数与不等式的关系即可求解.【详解】随自变量的增大而减小,当时,,即关于的不等式的解集是.故选:.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像.10、D【解析】
根据平行线的性质、平行四边形的判定、实数的性质即可判断.【详解】A.两直线平行,同位角相等,正确B.两组对角分别相等的四边形是平行四边形,正确C.若,则,正确D.若>0,则,错误故选D.【点睛】此题主要考查命题的真假,解题的关键是熟知根据平行线的性质、平行四边形的判定、实数的性质.11、A【解析】
根据一次函数y=kx+b的图象与k、b之间的关系,即可得出k的取值范围.【详解】∵一次函数y=kx+的图象不经过第三象限,∴一次函数y=kx+的图象经过第一、二、四象限,∴k<1.故选:A.【点睛】本题考查了一次函数的图象与系数k,b的关系,熟练掌握一次函数的图象的性质是解题的关键.12、B【解析】试题分析:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,在Rt△EDF和Rt△EGF中,∵ED=EG,EF=EF,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6﹣x,在Rt△BCF中,,解得x=3.故选B.考点:3.翻折变换(折叠问题);3.综合题.二、填空题(每题4分,共24分)13、4或5【解析】【分析】分两种情况分析:8可能是直角边也可能是斜边;根据直角三角形斜边上的中线等于斜边的一半.【详解】当一个直角三角形的两直角边分别是6,8时,由勾股定理得,斜边==10,则斜边上的中线=×10=5,当8是斜边时,斜边上的中线是4,故答案为:4或5【点睛】本题考核知识点:直角三角形斜边上的中线.解题关键点:分两种情况分析出斜边.14、y=-x+1【解析】由函数的图象与直线y=-x+1平行,可得斜率,将点(8,2)代入即可人求解.解:设所求一次函数的解析式为y=kx+b,∵函数的图象与直线y=-x+1平行,∴k=-1,又过点(8,2),有2=-1×8+b,解得b=1,∴一次函数的解析式为y=-x+1,故答案为y=-x+1.15、【解析】
根据方程无实数根求出b的取值范围,再确定b的值即可.【详解】∵一元二次方程x2+2bx+1=0无实数根,∴4b2-4<0∴-1<b<1,因此,b可以取等满足条件的值.【点睛】此题考查了一元二次方程根的判别式的应用.此题难度不大,解题的关键是掌握当△<0时,一元二次方程没有实数根.16、2016【解析】由题意可得,,,∵,为方程的个根,∴,,∴.17、【解析】试题解析:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是.18、【解析】
根据反比例函数图象在当x>0的范围内,y随着x的增大而增大,可知图象在第四象限有一支,由此确定反比例函数的系数(k-2)的符号.【详解】解:∵当时,随着的增大而增大,∴反比例函数图象在第四象限有一支,∴,解得,故答案为:.【点睛】本题考查了反比例函数的性质.对于反比例函数,(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.三、解答题(共78分)19、见解析.【解析】
分两种情况讨论:(1)当正方形边与正方形的对角线重合时;(2)当转到一般位置时,由题求证,故两个正方形重叠部分的面积等于三角形的面积,得出结论.【详解】(1)当正方形绕点转动到其边,分别于正方形的两条对角线重合这一特殊位置时,显然;(2)当正方形绕点转动到如图位置时,∵四边形为正方形,∴,,,即又∵四边形为正方形,∴,即,∴,在和中,,∴,∵,又,∴.【点睛】此题考查正方形的性质,三角形全等的判定与性质,三角形的面积等知识点.20、(1)点B的坐标为(15,900),直线AB的函数关系式为:.(2)小明能在比赛开始前到达体育馆.【解析】
(1)从图象可以看出:父子俩从出发到相遇时花费了15分钟,设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分,则路程和为1,即可列出方程求出小明的速度,再根据A,B两点坐标用待定系数法确定函数关系式;(2)直接利用一次函数的性质即可求出小明的父亲从出发到体育馆花费的时间,经过比较即可得出是否能赶上.【详解】(1)从图象可以看出:父子俩从出发到相遇时花费了15分钟设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分依题意得:15x+45x=1.解得:x=2.所以两人相遇处离体育馆的距离为2×15=900米.所以点B的坐标为(15,900).设直线AB的函数关系式为s=kt+b(k≠0).由题意,直线AB经过点A(0,1)、B(15,900)得:解之,得∴直线AB的函数关系式为:.(2)在中,令S=0,得.解得:t=3.即小明的父亲从出发到体育馆花费的时间为3分钟,因而小明取票的时间也为3分钟.∵3<25,∴小明能在比赛开始前到达体育馆.21、12【解析】
如图,连接AD,根据垂直平分线的性质可得BD=AD,进而得到∠DAC的度数和DC的长,再根据勾股定理求出AC的长即可.【详解】如图,连接AD,∵ED是AB的垂直平分线,∴AD=BD=4,∴∠BAD=∠B=30°,∴∠DAC=30°,∵DC=12AD∴AC=AD故答案是12.【点睛】本题主要考查垂直平分线的性质以及三角函数,求出∠DAC的大小是解题的关键.22、(1)今年5月份A款汽车每辆售价9万元;(2)共有3种进货方案:A款汽车8辆,B款汽车7辆;A款汽车9辆,B款汽车6辆;A款汽车10辆,B款汽车5辆;(3)当=0.5时,(2)中所有方案获利相同.【解析】
(1)求单价,总价明显,应根据数量来列等量关系,等量关系为:今年的销售数量=去年的销售数量;(2)关系式为:102≤A款汽车总价+B款汽车总价≤105;(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可.【详解】(1)设今年5月份A款汽车每辆售价m万元,则:解得:m=9;经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆,则:102≤7.5x+6(15-x)≤105,解得:∵x的正整数解为8,9,10,∴共有3种进货方案:A款汽车8辆,B款汽车7辆;A款汽车9辆,B款汽车6辆;A款汽车10辆,B款汽车5辆;(3)设总获利为W元,购进A款汽车x辆,则:W=(9-7.5)x+(8-6-)(15-x)=(-0.5)x+30-15,当=0.5时,(2)中所有方案获利相同.【点睛】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.23、(1)25;0.10;(2)补图见解析;(3)200人.【解析】
(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【详解】解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;故答案为25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点睛】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.24、(1);(2)见解析;(3).【解析】
(1)连接AC,先证△ABC是等边三角形,再由题意得出AE⊥BC,∠B=60°求解可得;
(2)证△BAE≌△CAF即可得;
(3)作AG⊥BC,由∠EAB=15°,∠ABC=60°知∠AEB=45°,根据AG=2得EG=AG=2,EB=EG-BG=2-2,再证△AEB≌△AFC知EB=FC,由FD=FC+CD=EB+CD可得答案.【详解】解:(1)如图1,连接AC,
∵四边形ABCD是菱形,
∴AB=BC,
又∵∠ABC=60°,
∴△ABC是等边三角形,
∵E是BC中点,
∴AE⊥BC,BE=BC=AB
在Rt△ABE中,AE=BEtanB=BE;(2)证明:连接,如图2中,∵四边形是菱形,,∴与都是等边三角形,∴,.∵,∴,在和中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育机构的数据安全管理与培训实践
- 灯光艺术装置设计与实现企业制定与实施新质生产力项目商业计划书
- 游泳入门课程行业跨境出海项目商业计划书
- 创意服装秀场设计行业跨境出海项目商业计划书
- 演唱会现场制作企业制定与实施新质生产力项目商业计划书
- 球员伤病康复中心行业深度调研及发展项目商业计划书
- 溪流水上玩具租赁行业跨境出海项目商业计划书
- 医疗信息系统的数字化转型与医院领导的挑战
- 技术驱动的教育领导力发展研究
- 教学管理系统的数字化转型与应用前景分析
- 医疗设备巡检和维修保养管理制度
- 2024年云南省中考历史试卷(含答案)
- 2024年个人信用报告(个人简版)样本(带水印-可编辑)
- 浙江省温州市2024年高一下学期期末教学质量统测英语试题(B)含解析
- 教科版科学五年级下册《课本问题课后研讨题》参考答案
- 2023年河南省对口升学计算机类基础课试卷
- 生活中的趣味数学智慧树知到期末考试答案章节答案2024年石河子大学
- 医疗收费收据样式(医院基层)
- 2024年北京市中考物理模拟卷(一)
- MOOC 金融法学-浙江财经大学 中国大学慕课答案
- 浙江省杭州市上城区2022-2023学年六年级下学期期末语文试题
评论
0/150
提交评论