2025届开封市重点中学八年级数学第二学期期末学业水平测试试题含解析_第1页
2025届开封市重点中学八年级数学第二学期期末学业水平测试试题含解析_第2页
2025届开封市重点中学八年级数学第二学期期末学业水平测试试题含解析_第3页
2025届开封市重点中学八年级数学第二学期期末学业水平测试试题含解析_第4页
2025届开封市重点中学八年级数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届开封市重点中学八年级数学第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.关于直线的说法正确的是()A.图像经过第二、三、四象限 B.与轴交于C.与轴交于 D.随增大而增大2.如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0) B.(1,0) C.(,0) D.(,0)3.小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为()A.y=0.5t(8<t≤12)B.y=0.5t+2(8<t≤12)C.y=0.5t+8(8<t≤12)D.y="0."5t-2(8<t≤12)4.下列条件中,不能判定四边形是正方形的是()A.对角线互相垂直且相等的四边形 B.一条对角线平分一组对角的矩形C.对角线相等的菱形 D.对角线互相垂直的矩形5.在四边形中,对角线,相交于点,,,添加下列条件,不能判定四边形是菱形的是().A. B. C. D.6.下列二次根式中,是最简二次根式的是()A. B. C. D.7.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14 B.16 C.18 D.208.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%9.实数a、b在数轴上的位置如图,则化简﹣﹣的结果是()A.﹣2b B.﹣2a C.2b﹣2a D.010.去分母解关于的方程产生增根,则的取值为()A.-1 B.1 C.3 D.以上答案都不对11.下列等式一定成立的是()A.9-4=5 B.512.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD的值最小时,点P的坐标为()A.(﹣1,0) B.(﹣2,0) C.(﹣3,0) D.(﹣4,0)二、填空题(每题4分,共24分)13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=_____.14.如图,在平面直角坐标系中,直线l为正比例函数的图象,点的坐标为,过点作x轴的垂线交直线l于点,以为边作正方形;过点作直线l的垂线,垂足为,交x轴于点,以为边作正方形;过点作x轴的垂线,垂足为,交直线l于点,以为边作正方形;……按此规律操作下去,得到的正方形的面积是______________.15.某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.16.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.17.如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为_____cm1.18.化简的结果为______.三、解答题(共78分)19.(8分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练.王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的成绩,将两次测得的成绩制作成如图所示的统计图和不完整的统计表训练后学生成绩统计表成绩/分数6分7分8分9分10分人数/人1385n根据以上信息回答下列问题(1)训练后学生成绩统计表中n=,并补充完成下表:平均分中位数众数训练前7.58训练后8(2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?20.(8分)如图,根据要求画图.(1)把向右平移5个方格,画出平移的图形.(2)以点B为旋转中心,把顺时针方向旋转,画出旋转后的图形.21.(8分)某服装制造厂要在开学前赶制3000套服装,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多了20%,结果提前4天完成任务.问原计划每天能完成多少套校服?22.(10分)(1)因式分解:(x²+4)²-16x²;(2)先化简.再从-1,1,2选取一个合适的数代入求值.23.(10分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC关于点O的中心对称的△A(2)画出△ABC绕点O顺时针旋转90∘后的△(3)求(2)中线段BC扫过的面积.24.(10分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?25.(12分)如图,AD是△ABC的高,CE是△ABC的中线.(1)若AD=12,BD=16,求DE;(2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.26.先化简,再求值:(+a﹣2)÷,其中a=+1.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据一次函数的性质对各选项进行逐一判断即可.【详解】解:A、∵k=-1<0,b=1>0,∴图象经过第一、二、四象限,故本选项错误;B、、∵当x=1时,y=0,∴图象经过点(1,0),故本选项正确;C、∵当x=-1时,y=2,∴图象不经过点(-1,0),故本选项错误;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误.故选:B【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.2、D【解析】

求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=-1,b=,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.3、D【解析】试题分析:由题意知小高从家去上班花费的时间为12分钟,当8<t≤12,小高正在走那段下坡路;小高从家门口骑车去离家4千米的单位上班,平路1千米,上坡路0.2×5=1千米,则下坡路长2千米,走下坡路花了4分钟,走下坡路的速度是0.5千米/分钟;若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为y=2+0.5•(t-8)=0.5t-2考点:求函数关系式点评:本题考查求函数关系式,做此类题的关键是审清楚题,找出题中各量之间的关系4、A【解析】

根据正方形的判定方法逐项判断即可.【详解】对角线互相垂直且相等的四边形不一定是平行四边形,故A不能判定,由矩形的一条对角线平分一组对角可知该四边形也是菱形,故B能判定,由菱形的对角线相等可知该四边形也是矩形,故C能判定,由矩形的对角线互相垂直可知该四边形也是菱形,故D能判定,故选A.【点睛】本题主要考查正方形的判定,掌握正方形既是矩形也是菱形是解题的关键.5、B【解析】

由,,证出四边形是平行四边形,A.,根据邻边相等的平行四边形,可证四边形是菱形;B.,对角线相等的平行四边形是矩形,不能证四边形是菱形;C.,根据对角线互相垂直的平行四边形是菱形,可证四边形是菱形;D.,证,根据等角对等边可证,即可证得四边形是菱形.【详解】,,四边形是平行四边形,A.,是菱形;B.,是矩形,不是菱形;C.,是菱形;D.,是菱形;故本题的答案是:B【点睛】本题考查了特殊四边形菱形的证明,平行四边形的证明,矩形的证明,注意对这些证明的理解,容易混淆,小心区别对比.6、A【解析】

直接利用最简二次根式的定义分析得出答案.【详解】A.是最简二次根式,故此选项正确;B.,故此选项错误;C.,故此选项错误;D.,故此选项错误.故选A.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.7、C【解析】

由△DBC≌△EBA,可知AE=DC,推出AE+AD+DE=AD+CD+ED=AC+DE即可解决问题.【详解】∵△ABC,△DBE都是等边三角形,∴BC=BA,BD=BE,∠ABC=∠EBD,∴∠DBC=∠EBA,∴△DBC≌△EBA,∴AE=DC,∴AE+AD+DE=AD+CD+ED=AC+DE,∵AC=BC=10,DE=BD=8,∴△AED的周长为18,故选C.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题时正确寻找全等三角形解决问题,属于中考常考题型.8、C【解析】试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C.9、A【解析】

根据数轴上点的位置关系,可得1>b>0>a>﹣1,根据二次根式的性质,绝对值的性质,可得答案.【详解】解:由数轴上点的位置关系,得1>b>0>a>﹣1,所以﹣﹣=﹣a﹣b﹣(b﹣a)=﹣a﹣b﹣b+a=﹣2b,故选:A.【点睛】本题考查了实数与数轴,利用数轴上点的位置关系得出1>b>0>a>﹣1是解题关键.10、A【解析】

分式方程去分母转化为整式方程,由分式方程有增根确定出x的值,代入整式方程计算即可求出m的值.【详解】方程两边乘以x-2得,x-3=m,

∵分式方程有增根,

∴x-2=0,即x=2,

∴2-3=m,

∴m=-1.

故选A..【点睛】本题考查了分式方程的增根:先把分式方程两边乘以最简公分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入最简公分母中,若其值不为零,则此解为原分式方程的解;若其值为0,则此整式方程的解为原分式方程的增根.11、B【解析】A.9-4=3-2=1,则原计算错误;B.5×3=15,正确;C.912、B【解析】

根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣8,∴点A的坐标为(﹣8,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣4,1),点D(0,1).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣4,1),D′(0,﹣1),∴,解得:,∴直线CD′的解析式为y=﹣x﹣1.令y=0,则0=﹣x﹣1,解得:x=﹣1,∴点P的坐标为(﹣1,0).故选:B.【点睛】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.二、填空题(每题4分,共24分)13、-3【解析】点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则14、【解析】

根据正比例函数的性质得到,,均为等腰直角三角形,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【详解】∵点的坐标为,∴点的坐标为,∴正方形的边长为1,面积为1.∵直线l为正比例函数的图象,∴,,均为等腰直角三角形,∴,,正方形的边长为,面积为.同理,正方形的边长为,面积为……所以正方形的面积是.【点睛】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到,,均为等腰直角三角形,正确找出规律是解题的关键.15、1.【解析】

根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.【详解】解:将数据从小到大重新排列为:5、6、1、1、10、10,

所以这组数据的中位数为=1.

故答案为:1.【点睛】本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.16、3【解析】

由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【点睛】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.17、2【解析】

根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【详解】解:∵DE是△ABC的中位线,∴DE∥BC,BC=1DE=10cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=BC×AF=×10×8=2cm1.故答案为2.【点睛】本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.18、【解析】

根据二次根式的性质进行化简.由即可得出答案.【详解】解:,

故答案为:.【点睛】本题考查的是二次根式的化简,掌握二次根式的性质:是解题的关键.三、解答题(共78分)19、(1)3;7.5;8.3;8;(2)估计该校九年级学生训练后比训练前达到优秀的人数增加了125人【解析】

(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;【详解】(1)n=20-1-3-8-5=3;强化训练前的中位数为=7.5;强化训练后的平均分为(1×6+3×7+8×8+9×5+10×3)=8.3;强化训练后的众数为8,故答案为3;7.5;8.3;8;(2)500×(-)=125,所以估计该校九年级学生训练后比训练前达到优秀的人数增加了125人.【点睛】本题考查读条形统计图图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)答案见解析;(2)答案见解析.【解析】

(1)分别作出点A、B、C向右平移5个方格所得对应点,再顺次连接可得;(2)分别作出点A、C绕点B顺时针方向旋转所得对应点,再顺次连接可得.【详解】解:如图所示,(1)即为平移后的图形;(2)即为旋转后的图形.【点睛】本题主要考查作图旋转变换、平移变换,解题的关键是根据旋转变换和平移变换的定义作出变换后的对应点.21、原计划每天能完成125套.【解析】试题解析:设原计划每天能完成套衣服,由题意得解得:经检验,是原分式方程的解.答:原计划每天能完成125套.22、(1);(2).【解析】

(1)先用平方差公式分解,再用完全平方公式二次分解;(2)把除法转化为乘法,并把分子、分母分解因式约分,然后从-1,1,2选取一个使原分式有意义的数代入计算即可.【详解】(1)(x²+4)²-16x²=(x²+4+4x)(x²+4-4x)=(x+2)²(x-2)²;(2)原式=,由题意,x≠±2且x≠1,∴当x=-1时,原式=.【点睛】本题考查了因式分解,分式的化简求值,熟练掌握因式分解的方法是解(1)的关键,熟练掌握分式的运算法则是解(2)的关键.23、(1)见解析;(2)见解析;(3)154【解析】

(1)根据中心对称的性质找出各个对应点的坐标,顺次连接即可;(2)根据旋转的性质找出旋转后各个对应点的坐标,顺次连接即可;(3)BC扫过的面积=S扇形OBB1−S扇形OCC1,由此计算即可.【详解】(1)如图(2)如图(3)BC扫过的面积=S扇形OBB1−S扇形OCC1=【点睛】本题考查的是旋转变换作图.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论