




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南长沙雨花区雅境中学2025届数学八下期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.将点向左平移4个单位长度得到点B,则点B坐标为()A. B. C. D.2.为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为1.6m.根据各班选出的学生,测量其身高,计算得到的数据如右表所示,学校应选择()学生平均身高(单位:m)标准差九(1)班1.570.3九(2)班1.570.7九(3)班1.60.3九(4)班1.60.7A.九(1)班 B.九(2)班 C.九(3)班 D.九(4)班3.小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为()A.8,1 B.1,9 C.8,9 D.9,14.将直线y=2x-3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A. B. C. D.5.下列二次拫式中,最简二次根式是()A.-2 B.12 C.156.若一组数据,0,2,4,的极差为7,则的值是().A. B.6 C.7 D.6或7.下面哪个点在函数的图象上()A. B. C. D.8.已知一次函数b是常数且,x与y的部分对应值如下表:x0123y6420那么方程的解是A. B. C. D.9.下列二次根式中,属于最简二次根式的是()A. B. C. D.10.下列汽车标识中,是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为_____.12.实数a,b在数轴上对应点的位置如图所示,化简|b|+=______.13.已知一组数据3、a、4、6的平均数为4,则这组数据的中位数是______.14.若一个等腰三角形的顶角等于70°,则它的底角等于________度,15.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是_____.16.在▱ABCD中,如果∠A+∠C=140°,那么∠B=度.17.实数64的立方根是4,64的平方根是________;18.如图,在边长为1的菱形ABCD中,∠ABC=120°连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°连接AE,再以AE为边作第三个菱形AEGH,使∠AEG=120°,…,按此规律所作的第n个菱形的边长是________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,正比例函数y=kx与函数y=6xx>0的图象相交于点A2,m,AB⊥x轴于点B.平移直线y=kx,使其经过点20.(6分)计算(+)﹣(+6)21.(6分)因为一次函数y=kx+b与y=-kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=-kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x-2的“镜子”函数:______________;(2)如果一对“镜子”函数y=kx+b与y=-kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.22.(8分)先化简,再求值:()•,其中x=﹣1.23.(8分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.24.(8分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:
A型
B型
价格(万元/台)
a
b
处理污水量(吨/月)
220
180经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.25.(10分)如图,在平面直角坐标系中,直线与轴,轴分别交于点,点。(1)求点和点的坐标;(2)若点在轴上,且求点的坐标。(3)在轴是否存在点,使三角形是等腰三角形,若存在。请求出点坐标,若不存在,请说明理由。26.(10分)为了贯彻落实区中小学“阅读·写字·演讲”三项工程工作,我区各校大力推广阅读活动,某校初二(1)班为了解2月份全班学生课外阅读的情况,调查了全班学生2月份读书的册数,并根据调查结果绘制了如下不完整的条形统计图和扇形统计图:根据以上信息解决下列问题:(1)参加本次问卷调查的学生共有______人,其中2月份读书2册的学生有______人;(2)补全条形统计图,并求扇形统计图中读书3册所对应扇形的圆心角度数.
参考答案一、选择题(每小题3分,共30分)1、D【解析】【分析】将点的横坐标减4即可.【详解】将点向左平移4个单位长度得到点B,则点B坐标为,即(-5,2)故选D【点睛】本题考核知识点:用坐标表示点的平移.解题关键点:理解平移的规律.2、C【解析】根据标准差的意义,标准差越小数据越稳定,由于选的是学生身高较为整齐的,故要选取标准差小的,应从九(1)和九(3)里面选,再根据平均身高约为1.6m可知只有九(3)符合要求,故选C.3、D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D.考点:众数;中位数.4、B【解析】
根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【详解】y=2(x-2)-3+3=2x-1.化简,得y=2x-1,故选B.【点睛】本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.5、A【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6、D【解析】
解:根据极差的计算法则可得:x-(-1)=7或4-x=7,解得:x=6或x=-3.故选D7、B【解析】
把各点坐标代入解析式即可求解.【详解】A.,y=4×1-2=2≠-2,故不在直线上;B.,y=4×3-2=10,故在直线上;C.,y=4×0.5-2=0,故不在直线上;D.,y=4×(-3)-2=-14,故不在直线上.故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知坐标的代入求解.8、C【解析】
因为一次函数b是常数且,x与y的部分对应值如表所示,求方程的解即为y=0时,对应x的取值,根据表格找出y=0时,对应x的取值即可求解.【详解】根据题意可得:的解是一次函数中函数值y=0时,自变量x的取值,所以y=0时,x=1,所以方程的解是x=1,故选C.【点睛】本题主要考查一元一次方程与一次函数的关系,解决本题的关键是要熟练掌握一次函数与一元一次方程的关系.9、C【解析】
根据二次根式的定义即可求解.【详解】A.,根号内含有分数,故不是最简二次根式;B.,根号内含有小数,故不是最简二次根式;C.,是最简二次根式;D.=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.10、D【解析】
根据中心对称图形的概念判断即可.(中心对称:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合.)【详解】根据中心对称图形的概念把图形绕着某一点旋转180°后,只有D选项才能与原图形重合,故选D.【点睛】本题主要考查中心对称图形的概念,是基本知识点,应当熟练的掌握.二、填空题(每小题3分,共24分)11、9或1【解析】【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【详解】有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD==5,CD==4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点睛】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.12、﹣a【解析】
根据各点在数轴上的位置判断出a、b的符号及绝对值的大小,再根据有理数的加法法则和二次根式的性质,把原式进行化简即可.【详解】解:由数轴可知a<0<b,且|a|>|b|,则a+b<0,∴原式=b+|a+b|=b﹣(a+b)=b﹣a﹣b=﹣a,故答案为﹣a.【点睛】本题考查的是实数与数轴,二次根式的性质,以及有理数的加法法则,熟知实数与数轴上各点是一一对应关系及绝对值性质是解答此题的关键.13、3.5【解析】
先根据平均数的计算公式求出x的值,再根据中位数的定义即可得出答案.【详解】∵数据3、a、4、6的平均数是4,∴(3+a+4+6)÷4=4,∴x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5,则中位数是3.5;故答案为:3.5.【点睛】此题考查中位数,算术平均数,解题关键在于利用平均数求出a的值.14、1【解析】
根据等腰三角形的性质和三角形的内角和即可得到结论.【详解】解:一个等腰三角形的顶角等于,它的底角,故答案为:1.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.15、1【解析】
过点C作CF⊥AB于F,由角平分线的性质得CD=CF,CE=CF,于是可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【详解】解:如图,过点C作CF⊥AB于F,
∵AC,BC分别平分∠BAD,∠ABE,
∴CD=CF,CE=CF,
∵AC=AC,BC=BC,
∴△ADC≌△AFC,△CBE≌△CBF,
∴AF=AD=5,BF=BE=2,
∴AB=AF+BF=1.故答案是:1.【点睛】本题考查全等三角形的判定和性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.16、1.【解析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=1°.故答案为1.17、【解析】
根据平方根的定义求解即可.【详解】.故答案为:.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.18、【解析】连接DB,∵四边形ABCD是菱形,∴AD=AB,AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n−1,故答案为()n−1.点睛:本题是一道找规律的题目.探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.三、解答题(共66分)19、y=3【解析】
求出A点的坐标,求出B点的坐标,再用待定系数法求出正比例函数的解析式,最后求出一次函数的解析式即可.【详解】解:将A(2,m)代入y=6x∵AB⊥x轴于点B,∴B(2,0).将A(2,3)代入y=kx中,3=2k∴设直线l所对应的函数表达式为y=3将∴B(2,0)代入上式,得0=3+b,解得b=-3.∴直线l所对应的函数表达式是y=3故答案为:y=3【点睛】本题考查平移的性质,反比例函数图象上点的坐标特征,用待定系数法求函数的解析式等知识点,能用待定系数法求出函数的解析式是解题的关键.20、【解析】
先去括号,同时把各根式化成最简二次根式,再合并同类二次根即可.【详解】原式=2+﹣﹣1=2+﹣1.【点睛】本题考查了二次根式的加减,能正确合并同类二次根式是解答此题的关键.21、(1)y=-3x-2;(2)y=-x+1与y=x+1【解析】
(1)直接利用“镜子”函数的定义得出答案;(2)利用等腰直角三角形的性质得出AO=BO=CO,进而得出各点坐标,即可得出函数解析式.【详解】(1)根据题意可得:函数y=3x-2的“镜子”函数:y=-3x-2;故答案为:y=-3x-2;(2)∵△ABC是等腰直角三角形,AO⊥BC,∴AO=BO=CO,∴设AO=BO=CO=x,根据题意可得:x×2x=16,解得:x=1,则B(-1,0),C(1,0),A(0,1),将B,A分别代入y=kx+b得:,解得:,故其函数解析式为:y=x+1,故其“镜子”函数为:y=-x+1.【点睛】此题主要考查了待定系数法求一次函数解析式以及等腰直角三角形的性质,得出各点坐标是解题关键.22、1﹣2.【解析】先根据分式混合运算的法则把括号里的进行化简,然后进行乘法运算,再把x的值代入进行计算即可.解:原式==3(x+1)﹣x+1=3x+3﹣x+1=1x+3.当x=﹣1时,原式=1×(﹣1)﹣1=1﹣2.23、(1)证明见解析;(2)①菱形BFEP的边长为cm;②点E在边AD上移动的最大距离为2cm.【解析】
(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=4cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=4cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【详解】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=,∴菱形BFEP的边长为;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.【点睛】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.24、(1);(2)有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台;④A型设备1台,B型设备7台;(1)为了节约资金,应选购A型设备2台,B型设备8台.【解析】
(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元,可列方程组求解.(2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式.(1)利用每月要求处理污水量不低于1880吨,可列不等式求解.【详解】解:(1)根据题意得:,解得:;(2)设购买污水处理设备A型设备x台,B型设备(10-x)台,根据题意得,12x+9(10-x)≤100,∴x≤,∵x取非负整数,∴x=0,1,2,1∴10-x=10,9,8,7∴有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.④A型设备1台,B型设备7台;(1)由题意:220x+180(10-x)≥1880,∴x≥2,又∵x≤,∴x为2,1.当x=2时,购买资金为12×2+9×8=96(万元),当x=1时,购买资金为12×1+9×7=99(万元),∴为了节约资金,应选购A型设备2台,B型设备8台.【点睛】本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.25、(1);(2);(3)在轴上存在点使为等腰三角形【解析】
(1)分别代入y=0,x=0,求出与之对应的x,y值,进而可得出点A,B的坐标;
(2)由三角形的面积公式结合S△BOP=S△AOB,可得出OP=OA,进而可得出点P的坐标;
(3)由OA,OB的长可求出AB的长,分AB=AM,BA=BM,MA=MB三种情况,利用等腰三角形的性质可求出点M的坐标.【详解】解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年强地运动加速度仪资金申请报告代可行性研究报告
- 2024年合结钢项目资金筹措计划书代可行性研究报告
- 2024年热塑性聚氨酯弹性体项目资金筹措计划书代可行性研究报告
- 2024年真空离子镀膜设备资金筹措计划书代可行性研究报告
- 2024年滤波型无功补偿装置项目投资申请报告代可行性研究报告
- 供电防护员练习试题
- 2025年access数据库计算机二级试题
- 基于全生命周期理论的医院科研经费管理研究
- 职业资格-交通工程真题库-11
- 职业资格-公路水运公共基础真题库-6
- 2025年护士考试心理健康试题及答案
- 旅游法规教程试题及答案
- 2025届天津市十二区重点学校高三下学期毕业联考(一)英语试题(含答案)
- 生物医学电子学智慧树知到期末考试答案章节答案2024年天津大学
- 2023年版一级建造师-水利工程实务电子教材
- 新中考考试平台-考生端V2.0使用手册
- DB14∕T 1319-2021 公路工程标准工程量清单及计量规范
- 诊所备案申请表格(卫健委备案)
- 环境土壤学PPT课件
- 痰标本的采集方法PPT课件
- 起重机轨道安装评定标准
评论
0/150
提交评论