




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学典型例题系列之几何专题03:圆综合大题(解析版)1.(2022·福建·统考中考真题)如图,内接于⊙O,交⊙O于点D,交于点E,交⊙O于点F,连接.(1)求证:;(2)若⊙O的半径为3,,求的长(结果保留π).【答案】(1)证明见解析;(2)【分析】(1)根据已知条件可证明四边形是平行四边形,由平行四边形的性质可得,等量代换可得,即可得出答案;(2)连接,由(1)中结论可计算出的度数,根据圆周角定理可计算出的度数,再根据弧长计算公式计算即可得出答案.【详解】(1)证明:∵,,∴四边形为平行四边形,∴,∵,∴,∴.(2)解:连接,如图,由(1)得,∵,∴,∴的长.【点睛】本题主要考查了等腰三角形的判定与性质,平行四边形的判定与性质,圆的性质与弧长公式,考查化归与转化思想,推理能力,几何直观等数学素养.2.(2022·四川攀枝花·统考中考真题)如图,的直径垂直于弦于点F,点P在的延长线上,与相切于点C.(1)求证:;(2)若的直径为4,弦平分半径,求:图中阴影部分的面积.【答案】(1)见解析(2)【分析】(1)首先可证得,由圆周角定理得:,可得,再根据切线的性质,可得,根据垂直的定义可得,据此即可证得;(2)首先由弦平分半径,,可得,,,再根据,可得,即可证得,最后由即可求得.【详解】(1)证明:如图,连接,,,由圆周角定理得:,,与相切,,,,,;(2)解:如图:连接,弦平分半径,,,在中,,,,,,,,,.【点睛】本题考查了垂径定理,圆周角定理,直角三角形的性质,扇形的面积公式,作出辅助线是解决本题的关键.3.(2022·江苏淮安·统考中考真题)如图,是的内接三角形,,经过圆心交于点,连接,.(1)判断直线与的位置关系,并说明理由;(2)若,求图中阴影部分的面积.【答案】(1)直线与相切,理由见解析(2)图中阴影部分的面积【分析】(1)连接,根据圆周角定理得到,连接,根据等边三角形的性质得到,根据切线的判定定理即可得到结论;(2)根据圆周角定理得到,解直角三角形得到,根据扇形和三角形的面积公式即可得到结论.【详解】(1)解:直线与相切,理由:如图,连接,∵,∴,连接,∵,∴是等边三角形,∴,∵,∴,∴,∵是的半径,∴直线与相切;(2)解:如(1)中图,∵是的直径,∴,∵,∴,∴,∴,∵,∴,∴,∴图中阴影部分的面积.【点睛】本题考查了直线与圆的位置关系,等边三角形的判定和性质,解直角三角形,扇形面积的计算,正确地作出辅助线是解题的关键.4.(2022·内蒙古·中考真题)如图,是的外接圆,与相切于点D,分别交,的延长线于点E和F,连接交于点N,的平分线交于点M.(1)求证:平分;(2)若,,求线段的长.【答案】(1)见解析(2)【分析】(1)连接OD,根据切线的性质得⊥EF,由得OD⊥BC,由垂径定理得,进而即可得出结论;(2)由平行线分线段定理得,再证明,可得BD=2,最后证明,进而即可求解.【详解】(1)证明:连接交于点H.∵与相切于点D∴,∴,∵,∴,∴,∴,∴
即平分;(2)解:∵,∴,∵,,∴,∵,,∴,∵平分,∴,∴,∴,∴,∵,,∴,∴∴,∴(负值舍去),∴【点睛】本题主要考查圆的基本性质,切线的性质、相似三角形的判定和性质,平行线分线段成比例定理,等腰三角形的判定和性质;找出相似三角形,列相似比求解是解决本题的关键.5.(2022·辽宁阜新·统考中考真题)如图,在中,,是边上一点,以为圆心,为半径的圆与相交于点,连接,且.(1)求证:是的切线;(2)若,,求的长.【答案】(1)见解析(2)【分析】(1)连接OD.由等腰三角形的性质及圆的性质可得∠A=∠ADC,∠B=∠BDO.再根据余角性质及三角形的内角和定理可得∠ODC=180°﹣(∠ADC+∠BDO)=90°.最后由切线的判定定理可得结论;(2)根据等边三角形的判定与性质可得∠DCO=∠ACB﹣∠ACD=30°.再由解直角三角形及三角形内角和定理可得∠BOD的度数,最后根据弧长公式可得答案.【详解】(1)证明:连接OD.∵AC=CD,∴∠A=∠ADC.∵OB=OD,∴∠B=∠BDO.∵∠ACB=90°,∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径,∴CD是⊙O的切线.(2)解:∵AC=CD,∠A=60°,∴△ACD是等边三角形.∴∠ACD=60°.∴∠DCO=∠ACB﹣∠ACD=30°.在Rt△OCD中,OD=CDtan∠DCOtan30°=2.∵∠B=90°﹣∠A=30°,OB=OD,∴∠ODB=∠B=30°.∴∠BOD=180°﹣(∠B+∠BDO)=120°.∴的长.【点睛】此题考查的是切线的判定与性质、直角三角形的性质、弧长公式,正确作出辅助线是解决此题的关键.6.(2022·江苏徐州·统考中考真题)如图,如图,点A、B、C在圆O上,,直线,,点O在BD上.(1)判断直线AD与圆O的位置关系,并说明理由;(2)若圆的半径为6,求图中阴影部分的面积.【答案】(1)直线AD与圆O相切,理由见解析(2)【分析】(1)连接OA,根据和AB=AD,可得∠DBC=∠ABD=∠D=30°,从而得到∠BAD=120°,再由OA=OB,可得∠BAO=∠ABD=30°,从而得到∠OAD=90°,即可求解;(2)连接OC,作OH⊥BC于H,根据垂径定理可得,进而得到,再根据阴影部分的面积为,即可求解.【详解】(1)解:直线AD与圆O相切,理由如下:如图,连接OA,∵,∴∠D=∠DBC,∵AB=AD,∴∠D=∠ABD,∵,∴∠DBC=∠ABD=∠D=30°,∴∠BAD=120°,∵OA=OB,∴∠BAO=∠ABD=30°,∴∠OAD=90°,∴OA⊥AD,∵OA是圆的半径,∴直线AD与园O相切,(2)解:如图,连接OC,作OH⊥BC于H,∵OB=OC=6,∴∠OCB=∠OBC=30°,∴∠BOC=120°,∴,∴,∴,∴扇形BOC的面积为,∵,∴阴影部分的面积为.【点睛】本题主要考查了切线的判定,求扇形面积,垂径定理,熟练掌握切线的判定定理,并根据题意得到阴影部分的面积为是解题的关键.7.(2022·西藏·统考中考真题)如图,已知BC为⊙O的直径,点D为的中点,过点D作DG∥CE,交BC的延长线于点A,连接BD,交CE于点F.(1)求证:AD是⊙O的切线;(2)若EF=3,CF=5,tan∠GDB=2,求AC的长.【答案】(1)见解析(2)AC=【分析】(1)连接,,根据“同圆中,等弧所对的圆周角相等”及等腰三角形的性质得到,进而得到,根据圆周角定理结合题意推出,即可判定AD是⊙O的切线;(2)根据平行线的性质得到∠BFE=∠GDB,∠A=∠ECB,解直角三角形求出OC,OA的长,根据线段的和差求解即可.【详解】(1)证明:如图,连接OD,BE,∵点D为的中点,∴,∴OD⊥CE,∠CBD=∠EBD,∵OB=OD,∴∠ODB=∠CBD,∴∠ODB=∠EBD,∴ODBE,∵BC为⊙O的直径,∴∠CEB=90°,∴CE⊥BE,∵ADCE,OD⊥CE,∴AD⊥OD,∵OD是⊙O的半径,∴AD是⊙O的切线;(2)解:∵DGCE,∴∠BFE=∠GDB,∠A=∠ECB,∵tan∠GDB=2,∴tan∠BFE=2,在Rt△BEF中,EF=3,tan∠BFE=,∴BE=6,∵EF=3,CF=5,∴CE=EF+CF=8,∴BC=,∴OD=OC=5,在Rt△BCE中,sin∠ECB=,∴sinA=sin∠ECB=,在Rt△AOD中,sinA=,OD=5,∴OA=,∴AC=OA﹣OC=.【点睛】本题是圆的综合题,考查了平行线的性质、切线的判定、圆周角定理、等腰三角形的性质、解直角三角形等知识,熟练掌握切线的判定、圆周角定理并作出合理的辅助线是解题的关键.8.(2022·宁夏·中考真题)如图,以线段为直径作,交射线于点,平分交于点,过点作直线于点,交的延长线于点.连接并延长交于点.(1)求证:直线是的切线;(2)求证:;(3)若,,求的长.【答案】(1)见解析(2)见解析(3)【分析】(1)连接OD,由∠ODA=∠OAD=∠DAC证明ODAC,得∠ODF=∠AED=90°,即可证明直线DE是⊙O的切线;(2)由线段AB是⊙O的直径证明∠ADB=90°,再根据等角的余角相等证明∠M=∠ABM,则AB=AM;(3)由∠AEF=90°,∠F=30°证明∠BAM=60°,则△ABM是等边三角形,所以∠M=60°,则∠EDM=30°,所以BD=MD=2ME=2,再证明∠BDF=∠F,得BF=BD=2.【详解】(1)证明:连接OD,则OD=OA,∴∠ODA=∠OAD,∵AD平分∠CAB,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴ODAC,∵DE⊥AC,∴∠ODF=∠AED=90°,∵OD是⊙O的半径,且DE⊥OD,∴直线DE是⊙O的切线.(2)证明:线段是的直径,,∴∠ADM=180°-∠ADB=,∴∠M+∠DAM=,∠ABM+∠DAB=,∵∠DAM=∠DAB,∴∠M=∠ABM,∴AB=AM.(3)解:∵∠AEF=90°,∠F=30°,∴∠BAM=60°,∴△ABM是等边三角形,∴∠M=60°,∵∠DEM=90°,ME=1,∴∠EDM=30°,∴MD=2ME=2,∴BD=MD=2,∵∠BDF=∠EDM=30°,∴∠BDF=∠F,∴BF=BD=2.【点睛】此题重点考查切线的判定、直径所对的圆周角是直角、等角的余角相等、等腰三角形的判定与性质、等边三角形的判定与性质、平行线的判定与性质、直角三角形中30°角所对的直角边等于斜边的一半等知识,正确地作出所需要的辅助线是解题的关键.9.(2022·山东东营·统考中考真题)如图,为的直径,点C为上一点,于点D,平分.(1)求证:直线是的切线;(2)若的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)【分析】(1)连接OC,根据OB=OC,以及平分推导出,即可得出,从而推出,即证明得出结论;(2)过点O作于F,利用即可得出答案.【详解】(1)证明:连接OC,如图,∵,∴,∵平分,∴,∴,∴,∵于点D,∴,∴直线是的切线;(2)过点O作于F,如图,∵,,∴,,∴,∴,∵,∴,∴,∴.【点睛】本题考查了圆的综合问题,包括垂径定理,圆的切线,扇形的面积公式等,熟练掌握以上性质并正确作出辅助线是本题的关键.10.(2022·湖北襄阳·统考中考真题)如图,AB是半圆O的直径,点C在半圆O上,点D为的中点,连接AC,BC,AD,AD与BC相交于点G,过点D作直线DEBC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若,CG=2,求阴影部分的面积.【答案】(1)见解析(2)【分析】(1)连接OD,根据已知条件,由OD⊥BC,DEBC,证明OD⊥DE即可;(2)根据相等,再由(1)中可得,,从而得到∠CAD=∠BAD=∠ABC=30°,在Rt△ACG中,利用锐角三角函数求出AC、AG的长,从而求出△CAG的面积,在Rt△ABD中利用锐角三角函数求出AD的长,根据DEBC可得△ACG∽△AED,利用相似三角形的面积比等于相似比的平方求出,进而即可阴影部分的面积.【详解】(1)证明:连接OD,如图所示,∵点D为的中点,∴OD⊥BC∵DEBC,∴OD⊥DE.∴DE是⊙O的切线.(2)连接BD,如图所示,∴BD=AC∵点D为的中点,∴,∴,∴∠CAD=∠BAD=30°.∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△ACG中,,∴,∵,∴,,∴BD=CA=6,,在Rt△ABD中,∴∵DE∥BC,∴△CAG∽△EAD,
∴,即,∴∴.【点睛】本题主要考查了切线的判定定理、垂径定理、圆周角定理以及相似三角形的性质,解直角三角形,掌握以上知识是解题的关键.11.(2022·辽宁朝阳·统考中考真题)如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.(1)求证:AF是⊙O的切线;(2)若⊙O的半径为5,AD是AEF的中线,且AD=6,求AE的长.【答案】(1)见解析(2)【分析】(1)由圆周角定理得∠ADC=90°,则∠ACD+∠DAC=90°,从而说明,即可证明结论;(2)作于点H,利用△ADH~△ACD,,求出AH的长,再利用直角三角形斜边上中线的性质得出AD=DE,利用等腰三角形的性质可得答案.【详解】(1)证明:∵AC是直径,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵∠ACD=∠B,∠B=∠DAF,∴∠DAF=∠ACD,∴∠DAF+∠DAC=90°,∴,∵AC是直径,∴AF是⊙O的切线;(2)解:作于点H,∵⊙O的半径为5,∴AC=10,∵∠AHD=∠ADC=90°,∠DAH=∠CAD,∴△ADH~△ACD,∴,∴,∵AD=6,∴,∵AD是△AEF的中线,∠EAF=90°,∴AD=ED,.【点睛】本题主要考查了圆周角定理,切线的判定定理,相似三角形的判定与性质,等腰三角形的性质等知识,根据相似三角形的判定与性质求出AH的长是解题的关键.12.(2022·浙江衢州·统考中考真题)如图,是以为直径的半圆上的两点,,连结.(1)求证:.(2)若,,求阴影部分的面积.【答案】(1)答案见解析(2)【分析】(1)根据同弧所对的圆周角相等得到∠ACD=∠DBA,根据∠CAB=∠DBA得到∠CAB=∠ACD,进而得到结论;(2)连结OC,OD,证明所求的阴影部分面积与扇形的面积相等,继而得到结论.【详解】(1)证明:∵=,∴∠ACD=∠DBA,
又∠CAB=∠DBA,∴∠CAB=∠ACD,
∴;(2)解:如图,连结OC,OD.∵∠ACD=30°,∴∠ACD=∠CAB=30°,∴∠AOD=∠COB=60°,∴∠COD=180°∠AOD∠COB=60°.∵,∴S△DOC=S△DBC,
∴S阴影=S弓形COD+S△DOC=S弓形COD+S△DBC=S扇形COD,∵AB=4,∴OA=2,∴S扇形COD=.
∴S阴影=.【点睛】本题主要考查扇形的面积,同弧所对的圆周角相等,平行线的判定,掌握定理以及公式是解题的关键.13.(2022·辽宁鞍山·统考中考真题)如图,是的外接圆,为的直径,点为上一点,交的延长线于点,与交于点,连接,若.(1)求证:是的切线.(2)若,,求的半径.【答案】(1)过程见解析(2)3【分析】(1)连接OE,先根据圆周角定理及已知条件得出∠ABC=∠BOE,进而得出,再由,根据平行线的性质得出∠FEO=∠ACB,然后根据直径所对的是直角,即可得出答案;(2)先说明,再设的半径为r,并表示,,,然后根据对应边成比例得出,根据比例式求出半径即可.【详解】(1)证明:连接OE.∵,,∴∠ABC=∠BOE,∴,∴∠OED=∠BCD.∵,∴∠FEC=∠ACE,∴∠OED+∠FEC=∠BCD+∠ACE,即∠FEO=∠ACB.∵AB是直径,∴∠ACB=90°,∴∠FEO=90°,∴.∵EO是的半径,∴EF是的切线.(2)∵,∴.∵BF=2,.设的半径为r,∴,,.∵,∴,解得,∴的半径是3.【点睛】本题主要考查了切线的性质和判定,解直角三角形,熟练掌握相关定理是解题的关键.14.(2022·山东菏泽·统考中考真题)如图,在中,以AB为直径作交AC、BC于点D、E,且D是AC的中点,过点D作于点G,交BA的延长线于点H.(1)求证:直线HG是的切线;(2)若,求CG的长.【答案】(1)见解析(2)【分析】(1)连接OD,利用三角形中位线的定义和性质可得,再利用平行线的性质即可证明;(2)先通过平行线的性质得出,设,再通过解直角三角形求出半径长度,再利用三角形中位线定理和相似三角形的判定和性质分别求出BC,BG的长度,即可求解.【详解】(1)连接OD,,,∵D是AC的中点,AB为直径,,,直线HG是的切线;(2)由(1)得,∴,,,设,,,在中,,,解得,∴,∵D是AC的中点,AB为直径,,,,,即,,.【点睛】本题考查了切线的判定,三角形中位线的性质,平行线的判定和性质,相似三角形的判定和性质及解直角三角形,熟练掌握知识点是解题的关键.15.(2022·辽宁丹东·统考中考真题)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.(1)请判断直线CD与⊙O的位置关系,并说明理由;(2)若sin∠ECD=,CE=5,求⊙O的半径.【答案】(1)CD是⊙O的切线,理由见解析(2)⊙O的半径为【分析】(1)结论:CD是⊙O的切线,证明OC⊥CD即可;(2)设OA=OC=r,设AE交OC于点J.证明四边形CDEJ是矩形,推出CD=EJ=4,CJ=DE=3,再利用勾股定理构建方程求解.(1)解:结论:CD是⊙O的切线.理由:连接OC.∵OC=OB,∴∠OCB=∠OBC,∵BC平分∠ABD,∴∠OBC=∠CBE,∴∠OCB=∠CBE,∴OC//BD,∵CD⊥BD,∴CD⊥OC,∵OC是半径,∴CD是⊙O的切线;(2)设OA=OC=r,设AE交OC于点J.∵AB是直径,∴∠AEB=90°,∵OC⊥DC,CD⊥DB,∴∠D=∠DCJ=∠DEJ=90°,∴四边形CDEJ是矩形,∴∠CJE=90°,CD=EJ,CJ=DE,∴OC⊥AE,∴AJ=EJ,∵sin∠ECD==,CE=5,∴DE=3,CD=4,∴AJ=EJ=CD=4,CJ=DE=3,在Rt△AJO中,r2=(r﹣3)2+42,∴r=,∴⊙O的半径为.【点睛】本题考查解直角三角形,切线的判定,垂径定理,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.(2022·贵州黔西·统考中考真题)如图,在中,,以AB为直径作⊙,分别交BC于点D,交AC于点E,,垂足为H,连接DE并延长交BA的延长线于点F.(1)求证:DH是⊙的切线;(2)若E为AH的中点,求的值.【答案】(1)见解析(2)【分析】(1)连接OD,证明,由,可得,即可证明结论;(2)连接AD和BE,由圆周角定理可以得出,可以得出,,进而根据平行线分线段成比例推出BD=CD,CH=HE,根据E为AH的中点,可得出AE=EH=CH,,根据且,可以得出,根据相似三角形的性质得到,将AE,OD代入即可求出答案.【详解】(1)连接OD,则.∴.∵,∴.∴.∴.∴.∵,∴.∴.∴DH是的切线.(2)连接AD和BE.∵AB是的直径,∴,.∵∴∴.∴且.∵,∴.∵,∴.∴.∵∴∴∴.∵E为AH的中点,∴.∴∴.【点睛】本题考查了切线的判定和性质,圆周角定律,平行线分线段成比例,三角形相似的判定与性质等知识,熟练掌握以上判定和性质是本题解题的关键.17.(2022·贵州安顺·统考中考真题)如图,是的直径,点是劣弧上一点,,且,平分,与交于点.(1)求证:是的切线;(2)若,求的长;(3)延长,交于点,若,求的半径.【答案】(1)见解析(2)1(3)2【分析】(1)根据是的直径,可得,即,根据同弧所对的圆周角相等,以及已知条件可得,等量代换后即可得,进而得证;(2)连接,根据角平分线的定义,以及等边对等角可得,根据同弧所对的圆周角相等可得,由垂径定理可得,进而可得,即可求解.(3)过点作,根据平行线分线段成比例,求得,设的半径为,则,证明,可得,在中,,勾股定理建立方程,解方程即可求解.【详解】(1)证明:∵是的直径,,,,,,,,即,是的切线,(2)如图,连接,平分,,∴DE=BE=∴,,,,是的直径,,,即∠ADF=∠BEF=90°,,,,;(3)如图,过点作,由(2)可知,,,,设的半径为,则,,,,,,,,,在中,,在中,,即,解得:(负值舍去),的半径为2.【点睛】本题考查了切线的判定,圆周角定理的推论,平行线分线段成比例,相似三角形的性质与判定,解直角三角形,综合运用以上知识是解题的关键.18.(2022·山东济南·统考中考真题)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.【答案】(1)见解析(2)【分析】(1)连接,欲证明CA=CD,只要证明即可.(2)因为为直径,所以,可得出三角形CBF为等腰直角三角形,即可求出BF,由此即可解决问题.【详解】(1)证明:连接∵与相切于点,∴,∴,∵,∴,∵所对的圆周角为,圆心角为,∴,∴,∴.(2)∵为直径,∴,在中,,,∴,∵平分,∴,∵,∴,∴.【点睛】本题考查切线的性质,圆周角定理、解直角三角形等知识,解题的关键是灵活运用这些知识解决问题,学会条件常用辅助线,属于中考常考题型.19.(2022·江苏南通·统考中考真题)如图,四边形内接于,为的直径,平分,点E在的延长线上,连接.(1)求直径的长;(2)若,计算图中阴影部分的面积.【答案】(1)4(2)6【分析】(1)设辅助线,利用直径、角平分线的性质得出的度数,利用圆周角与圆心角的关系得出的度数,根据半径与直径的关系,结合勾股定理即可得出结论.(2)由(1)已知,得出的度数,根据圆周角的性质结合得出,再根据直径、等腰直角三角形的性质得出的值,进而利用直角三角形面积公式求出,由阴影部分面积可知即为所求.【详解】(1)解:如图所示,连接,为的直径,平分,,,..,,,即...(2)解:如图所示,设其中小阴影面积为,大阴影面积为,弦与劣弧所形成的面积为,由(1)已知,,,,.,弦弦,劣弧劣弧..为的直径,,,.,...【点睛】本题考查圆的性质的理解与综合应用能力.涉及对半径与直径的关系,直径的性质,圆周角与圆心角的关系,圆周角的性质,勾股定理,直角三角形,角平分线等知识点.半径等于直径的一半;直径所对的圆周角是直角;在同圆或等圆中,相等的弦所对的圆周角等于圆心角的一半;在同圆或等圆中,圆周角相等弧相等弦相等.一个直角三角中,两个直角边边长的平方加起来等于斜边长的平方.恰当借助辅助线,灵活运用圆周角的性质建立等式关系是解本题的关键.20.(2022·山东枣庄·统考中考真题)如图,在半径为10cm的⊙O中,AB是⊙O的直径,CD是过⊙O上一点C的直线,且AD⊥DC于点D,AC平分∠BAD,点E是BC的中点,OE=6cm.(1)求证:CD是⊙O的切线;(2)求AD的长.【答案】(1)见解析(2)【分析】(1)连接OC,由AC平分∠BAD,OA=OC,可得∠DAC=∠OCA,ADOC,根据AD⊥DC,即可证明CD是⊙O的切线;(2)由OE是△ABC的中位线,得AC=12,再证明△DAC∽△CAB,,即,从而得到AD.【详解】(1)证明:连接OC,如图:∵AC平分∠BAD,∴∠DAC=∠CAO,∵OA=OC,∴∠CAO=∠OCA,∴∠DAC=∠OCA,∴ADOC,∵AD⊥DC,∴CO⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵E是BC的中点,且OA=OB,∴OE是△ABC的中位线,AC=2OE,∵OE=6,∴AC=12,∵AB是⊙O的直径,∴∠ACB=90°=∠ADC,又∠DAC=∠CAB,∴△DAC∽△CAB,∴,即,∴AD.【点睛】本题考查圆的切线的判定定理,相似三角形的判定及性质等知识,解题的关键是熟练应用圆的相关性质,转化圆中的角和线段.21.(2022·内蒙古鄂尔多斯·统考中考真题)如图,以AB为直径的⊙O与△ABC的边BC相切于点B,且与AC边交于点D,点E为BC中点,连接DE、BD.(1)求证:DE是⊙O的切线;(2)若DE=5,cos∠ABD=,求OE的长.【答案】(1)见解析(2)【分析】(1)连接OD,可推出∠BDC=90°,进而得出DE=BE,然后证明△DOE≌△BOE,求出∠ODE=∠ABC=90°即可得出结论;(2)可推出∠C=∠ABD,解直角△ABC求得AC,进而根据三角形中位线定理求得OE.【详解】(1)证明:如图,连接OD,∵AB为⊙O的直径,BC为⊙O的切线,∴∠BDC=∠ADB=90°,∠ABC=90°,∵E是BC的中点,∴DE=BE=EC=,在△DOE和△BOE中,,∴△DOE≌△BOE(SSS),∴∠ODE=∠ABC=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵∠ABC=90°,∴∠ABD+∠CBD=90°,由(1)知:∠BDC=90°,BC=2DE,∴∠C+∠DBC=90°,BC=2DE=10,∴∠C=∠ABD,在Rt△ABC中,AC==,∵OA=OB,BE=CE,∴OE=.【点睛】本题考查了切线的判定和性质,直角三角形斜边中线的性质,全等三角形的判定和性质,解直角三角形,三角形中位线定理等知识,解决问题的关键是灵活运用有关基础知识.22.(2022·山东日照·统考中考真题)如图,在Rt△ABC中,∠C=90°,∠B=30°,点D为边AB的中点,点O在边BC上,以点O为圆心的圆过顶点C,与边AB交于点D.(1)求证:直线AB是⊙O的切线;(2)若,求图中阴影部分的面积.【答案】(1)见解析(2)【分析】(1)连接OD,CD,根据含30度角的直角三角形的性质得出AC=AB,求出∠A=90°∠B=60°,根据直角三角形的性质得出BD=AD=AB,求出AD=AC,根据等边三角形的判定得出△ADC是等边三角形,根据等边三角形的性质得出∠ADC=∠ACD=60°,求出∠ODC=∠DCO=30°,求出OD⊥AB,再根据切线的判定得出即可;(2)求出BD=AC=,BO=2DO,根据勾股定理得出BO2=OD2+BD2,求出OD,再分别求出△BDO和扇形DOE的面积即可.【详解】(1)证明:连接OD,CD,∵∠ACB=90°,∠B=30°,∴AC=AB,∠A=90°∠B=60°,∵D为AB的中点,∴BD=AD=AB,∴AD=AC,∴△ADC是等边三角形,∴∠ADC=∠ACD=60°,∵∠ACB=90°,∴∠DCO=90°60°=30°,∵OD=OC,∴∠ODC=∠DCO=30°,∴∠ADO=∠ADC+∠ODC=60°+30°=90°,即OD⊥AB,∵OD过圆心O,∴直线AB是⊙O的切线;(2)解:由(1)可知:AC=AD=BD=AB,又∵AC=,∴BD=AC=,∵∠B=30°,∠BDO=∠ADO=90°,∴∠BOD=60°,BO=2DO,由勾股定理得:BO2=OD2+BD2,即(2OD)2=OD2+()2,解得:OD=1(负数舍去),所以阴影部分的面积S=S△BDOS扇形DOE=.【点睛】本题考查了切线的判定,直角三角形的性质,圆周角定理,扇形的面积计算等知识点,能熟记直角三角形的性质、切线的判定和扇形的面积公式是解此题的关键.23.(2022·湖北荆门·统考中考真题)如图,AB为⊙O的直径,点C在直径AB上(点C与A,B两点不重合),OC=3,点D在⊙O上且满足AC=AD,连接DC并延长到E点,使BE=BD.(1)求证:BE是⊙O的切线;(2)若BE=6,试求cos∠CDA的值.【答案】(1)证明见解析(2)【分析】(1)根据直径所对的圆周角是直角可得∠ADB=90°,从而可得∠BDE+∠ADC=90°,根据等腰三角形的性质以及对顶角相等可得∠ECB=∠ADC,然后根据等腰三角形的性质可得∠E=∠BDE,从而可得∠E+∠BCE=90°,最后利用三角形内角和定理可得∠EBC=90°,即可解答;(2)设⊙O的半径为r,则AC=AD=3+r,在Rt△ABD中,利用勾股定理可求出r=5,从而求出BC=2,然后在Rt△EBC中,根据勾股定理可求出EC的长,从而利用锐角三角函数的定义进行计算即可解答.【详解】(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠BDE+∠ADC=90°,∵AC=AD,∴∠ACD=∠ADC,∵∠ACD=∠ECB,∴∠ECB=∠ADC,∵EB=DB,∴∠E=∠BDE,∴∠E+∠BCE=90°,∴∠EBC=180°﹣(∠E+∠ECB)=90°,∵OB是⊙O的半径,∴BE是⊙O的切线;(2)解:设⊙O的半径为r,∵OC=3,∴AC=AD=AO+OC=3+r,∵BE=6,∴BD=BE=6,在Rt△ABD中,BD2+AD2=AB2,∴36+(r+3)2=(2r)2,∴r1=5,r2=﹣3(舍去),∴BC=OB﹣OC=5﹣3=2,在Rt△EBC中,EC===2,∴cos∠ECB===,∴cos∠CDA=cos∠ECB=,∴cos∠CDA的值为.【点睛】本题考查了切线的判定与性质,解直角三角形,熟练掌握切线的判定与性质,以及锐角三角函数的定义是解题的关键.24.(2022·湖南湘西·统考中考真题)如图,在Rt△ABC中,∠B=90°,AE平分∠BAC交BC于点E,O为AC上一点,经过点A、E的⊙O分别交AB、AC于点D、F,连接OD交AE于点M.(1)求证:BC是⊙O的切线.(2)若CF=2,sinC=,求AE的长.【答案】(1)见解析(2)【分析】(1)连接OE,方法一:根据角平分线的性质及同弧所对的圆周角是圆心角的一半得出∠OEC=90°即可;方法二:根据角平分线的性质和等腰三角形的性质得出∠OEC=90°即可;(2)连接EF,根据三角函数求出AB和半径的长度,再利用三角函数求出AE的长即可.【详解】(1)连接OE,方法一:∵AE平分∠BAC交BC于点E,∴∠BAC=2∠OAE,∵∠FOE=2∠OAE,∴∠FOE=∠BAC,∴OE∥AB,∵∠B=90°,∴OE⊥BC,又∵OE是⊙O的半径,∴BC是⊙O的切线;方法二:∵AE平分∠BAC交BC于点E,∴∠OAE=∠BAE,∵OA=OE,∴∠OAE=∠OEA,∴∠BAE=∠OEA,∴OE∥AB,∵∠B=90°,∴OE⊥BC,又∵OE是⊙O的半径,∴BC是⊙O的切线;(2)连接EF,∵CF=2,sinC=,∴,∵OE=OF,∴OE=OF=3,∵OA=OF=3,∴AC=OA+OF+CF=8,∴AB=AC•sinC=8×=,∵∠OAE=∠BAE,∴cos∠OAE=cos∠BAE,即,∴,解得AE=(舍去负数),∴AE的长为.【点睛】本题主要考查切线的判定和三角函数的应用,熟练掌握切线的判定定理和三角函数是解题的关键.25.(2022·四川绵阳·统考中考真题)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.(1)求证:;(2)若⊙O的半径为,DE=1,求AE的长度;(3)在(2)的条件下,求的面积.【答案】(1)见解析(2)3(3)【分析】(1)连接,利用垂径定理可得,由为⊙O的切线可得,由平行线的判定定理可得结论;(2)连接,,设,则,由可得,,在中,利用勾股定理可得,即;(3)连接,,设与交于点,利用可得,在中利用勾股定理可得,所以,又证明四边形为矩形,所以面积为矩形面积的一半,进而可得的面积.【详解】(1)解:证明:如图,连接,为劣弧的中点,,,又为⊙O的切线,,;(2)解:如图,连接,,设,则,为劣弧的中点,,,又,,,,,为⊙O的直径,,又⊙O的半径为,,由得,解得或(舍),;(3)解:如图,设与交于点,由(2)知,,,在中,,,,,又,,,,,为⊙O的直径,,由(1)可知,,四边形为矩形,,,.【点睛】本题考查了圆的有关性质,圆周角定理,垂径定理及其推论,勾股定理,相似三角形的判定与性质,圆的切线的判定与性质,矩形的判定与性质,平行线的判定与性质,熟练掌握这些性质并能灵活运用是解题的关键.26.(2022·甘肃兰州·统考中考真题)如图,是的外接圆,AB是直径,,连接AD,,AC与OD相交于点E.(1)求证:AD是的切线;(2)若,,求的半径.【答案】(1)见解析(2)2【分析】(1)先证∠BOC+∠AOD=90°,再因为,得出∠ADO+∠AOD=90°,即可得∠OAD=90°,即可由切线的判定定理得出结论;(2)先证明∠AED=∠DAE,得出DE=AD=,再证∠OAC=∠OCA,得tan∠OAC=tan∠OCA=,设OC=OA=R,则OE=R,在Rt△OAD中,由勾股定理,得,解之即可.【详解】(1)证明:∵,∴∠COD=90°,∵∠BOC+∠COD+∠AOD=180°,∴∠BOC+∠AOD=90°,∵,∴∠ADO+∠AOD=90°,∵∠ADO+∠AOD+∠OAD=180°,∴∠OAD=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠BAC+∠CAD=∠OAD=90°,∴∠B=∠CAD,∵∠B+∠BOC+∠OCB=∠ADO+∠CAD+∠AED=180°,∠ADO=∠BOC,∴∠AED=∠OCB,∵OB=OC,∴∠B=∠OCB,∴∠AED=∠CAD,∴DE=AD=,∵OC=OA,∴∠OAC=∠OCA,∵OC⊥OD,∴∠COE=90°,∴tan∠OAC=tan∠OCA=,设OC=OA=R,则OE=R,在Rt△OAD中,∠OAD=90°,由勾股定理,得OD2=OA2+AD2,即,解得:R=2或R=0(不符合题意,舍去),∴⊙O的半径为2.【点睛】本题考查切线的判定,解直角三角形,勾股定理,等腰三角形的判定,圆周角定理的推论,本题属圆的综合题目,熟练掌握相关性质与判定是解题的关键.27.(2022·青海·统考中考真题)如图,AB是的直径,AC是的弦,AD平分∠CAB交于点D,过点D作的切线EF,交AB的延长线于点E,交AC的延长线于点F.(1)求证:;(2)若,,,求BE的长.【答案】(1)见解析(2)2【分析】(1)连接,根据平分,可得,从而得到,可得,再由切线的性质,即可求解;(2)由,可得,设为,可得,即可求解.【详解】(1)证明:连接,∵平分,∴,∵,∴,∴,∴,∵为的切线,∴,∴.(2)解:由(1)得:,∴,∵,,∴,∵,∴,,∴,设为,∴,∴,解得:,即的长为2.【点睛】本题主要考查了切线的性质,相似三角形的判定和性质,熟练掌握切线的性质,相似三角形的判定和性质是解题的关键.28.(2022·广西柳州·统考中考真题)如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.(1)求证:CD是⊙O的切线;(2)求sin∠FHG的值;(3)若GH=,HB=2,求⊙O的直径.【答案】(1)见解析(2)(3)⊙O的直径为【分析】(1)连接OF,先证明OFAC,则∠OFD=∠C=,根据切线的判定定理可得出结论.(2)先证∠DFB=∠OAF,∠ADG=∠FDG,根据三角形的一个外角等于和它不相邻的两个内角之和得出∠FGH=∠FHG=,从而可求出sin∠FHG的值.(3)先在△GFH中求出FH的值为4,根据等积法可得,再证△DFB∽△DAF,根据对应边成比例可得,又由角平分线的性质可得,从而可求出AG、AF.在Rt△AFB中根据勾股定理可求出AB的长,即⊙O的直径.【详解】(1)证明:连接OF.∵OA=OF,∴∠OAF=∠OFA,∵
∴∠CAF=∠FAB,∴∠CAF=∠AFO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学五年级疫情期间线上教学工作总结模版
- 遇见未来的高考作文试题及解析
- 助理班主任心得体会一(5篇)
- 行政法的历史演变及试题与答案
- 开发者自我提升的路径试题及答案
- 餐厨垃圾资源化利用市场趋势与前景分析
- 集中注意力技巧2025年计算机二级VB考试试题及答案
- 行政法学热点问题解析与试题
- 代打公积金协议书
- 雇佣村民协议书
- 新人教版数学五年级下册全册课本练习题精编可编辑可打印
- 2024年电气试验证考试题库附答案
- 《安全生产法培训》课件
- 急需学科专业引导发展清单
- 江苏省无锡市2024年中考模拟数学试题附答案
- 2024年山东出版集团有限公司招聘笔试参考题库含答案解析
- 氮化镓射频器件
- 习题课 理想气体的状态方程及状态变化图像
- 手术室甲状腺切除术手术配合护理查房
- 建筑工程各类材料送检取样规范(资料员)
- 六年级下册综合实践活动教案-我爱阅读 全国通用
评论
0/150
提交评论