江苏无锡市2025届数学八下期末检测试题含解析_第1页
江苏无锡市2025届数学八下期末检测试题含解析_第2页
江苏无锡市2025届数学八下期末检测试题含解析_第3页
江苏无锡市2025届数学八下期末检测试题含解析_第4页
江苏无锡市2025届数学八下期末检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏无锡市2025届数学八下期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,第一个图形中有4个“”,第二个图形中有7个“”,第三个图形中有11个“”,按照此规律下去,第8个图形中“”的个数为().A.37 B.46 C.56 D.672.某校九年级(1)班全体学生体能测试成绩统计如下表(总分30分):成绩(分)24252627282930人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学 B.成绩的众数是28分C.成绩的中位数是27分 D.成绩的平均数是27.45分3.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥34.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,3,2 B.1,2,5C.5,12,13 D.1,2,25.如图,的对角线与相交于点,,垂足为,,,,则的长为()A. B. C. D.6.已知点M的坐标为(3,﹣4),则与点M关于x轴和y轴对称的M1、M2的坐标分别是()A.(3,4),(3,﹣4)B.(﹣3,﹣4),(3,4)C.(3,﹣4),(﹣3,﹣4)D.(3,4),(﹣3,﹣4)7.甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同。设甲每天加工服装x件。由题意可得方程()A. B.C. D.8.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t9.一个三角形三边的比为1:2:5,则这个三角形是()A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形10.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤b≤13 B.12≤b≤15 C.13≤b≤16 D.15≤b≤16二、填空题(每小题3分,共24分)11.某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.12.如果一个多边形的每一个外角都等于,则它的内角和是_________.13.如图,点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则反比例函数的解析式是______.14.已知关于x的方程的解是负数,则n的取值范围为.15.(2011贵州安顺,17,4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.16.将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.17.如图,的对角线、相交于点,经过点,分别交、于点、,已知的面积是,则图中阴影部分的面积是_____.18.一个正多边形的每个内角等于108°,则它的边数是_________.三、解答题(共66分)19.(10分)有一块田地的形状和尺寸如图所示,求它的面积.20.(6分)如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.21.(6分)射击队为从甲、乙两名运动员选拔一人参加运动会,对他们进行了六次测试,测试成绩如下表(单位:环)第一次第二次第三次第四次第五次第六次甲10898109乙107101098(1)由表格中的数据,计算出甲的平均成绩是环,乙的成绩是环.(2)结合平均水平与发挥稳定性你认为推荐谁参加比赛更适合,请说明理由.22.(8分)四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.求∠BAD的度数;23.(8分)如图,边长为5的正方形OABC的顶点O在坐标原点处,点A,C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP.(2)若点E的坐标为(3,0),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.24.(8分)某文具店准备购进甲、乙两种文具袋,已知甲文具袋每个的进价比乙每个进价多2元,经了解,用120元购进的甲文具袋与用90元购进的乙文具袋的数量相等.(1)分别求甲、乙两种文具袋每个的进价是多少元?(2)若该文具店用1200元全部购进甲、乙两种文具袋,设购进甲x个,乙y个.①求y关于x的关系式.②甲每个的售价为10元,乙每个的售价为9元,且在进货时,甲的购进数量不少于60个,若这批文具袋全部售完可获利w元,求w关于x的关系式,并说明如何进货该文具店所获利润最大,最大利润是多少?25.(10分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.26.(10分)如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与DO相反的向量______;(2)填空:AO+BC+OB=______;(3)求作:OC+AB(保留作图痕迹,不要求写作法).

参考答案一、选择题(每小题3分,共30分)1、B【解析】

设第n个图形有an个“•”(n为正整数),观察图形,根据给定图形中“•”个数的变化可找出变化规律“an=+1(n为正整数)”,再代入n=8即可得出结论.【详解】设第n个图形有an个“•”(n为正整数).

观察图形,可知:a1=1+2+1=4,a2=1+2+3+1=7,a3=1+2+3+4+1=11,a4=1+2+3+4+5+1=16,…,

∴an=1+2+…+n+(n+1)+1=+1(n为正整数),

∴a8=+1=1.

故选:B.【点睛】考查了规律型:图形的变化类,根据各图形中“•”个数的变化找出变化规律“an=+1(n为正整数)”是解题的关键.2、C【解析】

结合表格根据众数、平均数、中位数的概念求解.【详解】A、该班的学生人数为2+5+6+6+8+7+6=40(人),故此选项正确;B、由于28分出现次数最多,即众数为28分,故此选项正确;C、成绩的中位数是第20、21个数据的平均数,即中位数为=28(分),故此选项错误;D、=27.45(分),故此选项正确,故选C.【点睛】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.3、D【解析】

解不等式组得:,∵不等式组的解集为x<3∴m的范围为m≥3,故选D.4、D【解析】试题分析:A、∵12+(3)2=22,∴能组成直角三角形;B、∵12+22=(5)2,∴能组成直角三角形;C、∵52+122=132,∴能组成直角三角形;D、∵12+(2)2≠(2)2,∴不能组成直角三角形.故选D.考点:勾股定理的逆定理.5、D【解析】

∵四边形ABCD是平行四边形,,.又,在中,,故选D.【点睛】错因分析:中等题。选错的原因是:1.对平行四边形的性质没有掌握;2.不能利用勾股定理的逆定理得出;3.未能利用的两种计算方法得到线段间的关系.6、D【解析】

直接利用关于x,y轴对称点的性质分别得出答案.【详解】∵点M的坐标为(3,﹣4),∴与点M关于x轴和y轴对称的M1、M2的坐标分别是:(3,4),(﹣3,﹣4).故选D.【点睛】本题考查了关于x,y轴对称点的性质,正确掌握横纵坐标的关系是解题的关键.7、C【解析】

根据乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同,列出相应的方程,本题得以解决.【详解】解:由题意可得,,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.8、B【解析】

根据因式分解的意义,可得答案.【详解】A.分解不正确,故A不符合题意;B.把一个多项式转化成几个整式积的形式,故B符合题意;C.是整式的乘法,故C不符合题意;D.没把一个多项式转化成几个整式积的形式,故D不符合题意.故选B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.9、B【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:这个三角形是直角三角形,理由如下:

因为边长之比满足1:2:5,

设三边分别为x、2x、5x,

∵(x)2+(2x)²=(5x)²,

即满足两边的平方和等于第三边的平方,

∴它是直角三角形.

故选B.【点睛】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10、D【解析】

此题涉及的知识点是解直角三角形,根据题目中底面半径是5,高是12,可以算出另一边,吸管在罐外部分剩余3,不同放置就可以算出总长【详解】底面半径是5,高是12,则吸管最长放在罐里的长度为13,加上罐外的3,总长为16;如果吸管竖直放置,则罐里最短长为12,加上罐外3总长为15,所以吸管总长范围为:故选D【点睛】此题重点考察学生对直角三角形的解的应用,勾股定理是解题的关键二、填空题(每小题3分,共24分)11、1.【解析】

根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果.【详解】解:设王艳骑自行车的速度为xm/min,则爸爸的速度为:(5x+x)÷5=x(m/min),由函数图象可知,公司距离演奏厅的距离为9400米,∵公司位于家正西方3900米,∴家与演奏厅的距离为:9400﹣3900=5500(米),根据题意得,5x+5×x+()×=5500,解得,x=200(m/min),∴爸爸的速度为:(m/min)∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣()×300=1(m).故答案为:1.【点睛】本题考查了函数图象与行程问题,解题的关键是将函数图象与实际的行程对应起来,列出方程,解出相关量.12、【解析】

根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n-2)•180°,代入公式就可以求出内角和.【详解】解:多边形边数为:360°÷30°=12,

则这个多边形是十二边形;

则它的内角和是:(12-2)•180°=1°.

故答案为:1.【点睛】本题考查多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13、(x<0)【解析】

连结OA,如图,利用三角形面积公式得到,再根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.【详解】解:连结OA,如图,

∵AB⊥x轴,

∴OC∥AB,

∴S△OAB=S△CAB=3,∵∴|k|=3,

∵k<0,

∴k=-1.∴反比例函数的解析式为(x<0)

故答案为:(x<0).【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14、n<1且【解析】

分析:解方程得:x=n﹣1,∵关于x的方程的解是负数,∴n﹣1<0,解得:n<1.又∵原方程有意义的条件为:,∴,即.∴n的取值范围为n<1且.15、P(5,5)或(4,5)或(8,5)【解析】试题解析:由题意,当△ODP是腰长为4的等腰三角形时,有三种情况:(5)如图所示,PD=OD=4,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=5.在Rt△PDE中,由勾股定理得:DE=,∴OE=OD-DE=4-5=4,∴此时点P坐标为(4,5);(4)如图所示,OP=OD=4.过点P作PE⊥x轴于点E,则PE=5.在Rt△POE中,由勾股定理得:OE=,∴此时点P坐标为(5,5);(5)如图所示,PD=OD=4,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=5.在Rt△PDE中,由勾股定理得:DE=,∴OE=OD+DE=4+5=8,∴此时点P坐标为(8,5).综上所述,点P的坐标为:(4,5)或(5,5)或(8,5).考点:5.矩形的性质;4.坐标与图形性质;5.等腰三角形的性质;5.勾股定理.16、y=-x+1.【解析】

根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.【详解】解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,∵经过点(2,1),∴1=2a+1,解得:a=-1,∴平移后的直线的解析式为y=-x+1,故答案为:y=-x+1.【点睛】本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.17、【解析】

只要证明,可得,即可解决问题.【详解】四边形是平行四边形,,,,,,.故答案为:.【点睛】本题考查平行四边形的性质。全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18、1【解析】

由题意可得这个正多边形的每个外角等于72°,然后根据多边形的外角和是360°解答即可.【详解】解:∵一个正多边形的每个内角等于108°,∴这个正多边形的每个外角等于72°,∴这个正多边形的边数为.故答案为:1.【点睛】本题考查了正多边形的基本知识,属于基础题型,熟知正多边形的每个外角相等、多边形的外角和是360°是解此题的关键.三、解答题(共66分)19、面积为1.【解析】

在直角△ACD中,已知AD,CD,根据勾股定理可以求得AC,根据AC,BC,AB的关系可以判定△ABC为直角三角形,根据直角三角形面积计算公式即可计算四边形ABCD的面积.【详解】解:连接AC,在Rt△ACD中,AC为斜边,已知AD=4,CD=3,则AC==5,∵AC2+BC2=AB2,∴△ABC为直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=AC•CB﹣AD•DC=1,答:面积为1.【点睛】本题考查了勾股定理及其逆定理在实际生活中的运用,考查了直角三角形面积的计算,本题中正确的判定△ABC为直角三角形是解题的关键.20、(1)见解析;(2)70°.【解析】

(1)结合中位线的性质证明即可;(2)先根据平行四边形的性质得到∠DEF=∠BAC,再根据题意证明∠DHF=∠BAC,得到∠DEF=∠DHF,计算∠DHF大小即可.【详解】(1)∵D,E,F分别是边AB、BC、CA的中点,∴DE,EF是△ABC的中位线,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DEF=∠DHF=∠AHF+∠AHD=70°.【点睛】本题主要考查中位线的性质和平行四边形的判定与性质,掌握中位线的性质,证明∠DEF=∠DHF是解答本题的关键.21、(1)9,9;(2)甲.【解析】分析:1、首先根据图表得出甲、乙每一次的测试成绩,再利用平均数的计算公式分别求出甲、乙的平均成绩;2、得到甲、乙的平均成绩后,再结合方差的计算公式即可求出甲、乙的方差;接下来结合方差的意义,从稳定性方面进行分析,即可得出结果.详解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差=[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=.乙的方差=[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]=.推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.点睛:本题考查了平均数以及方差的求法及意义,正确掌握方差的计算公式是解答本题的关键.方差的计算公式为:.22、∠BAD=135°.【解析】分析:连接AC,则△ABC是等腰直角三角形,用勾股定理求出AC,再用勾股定理的逆定理判定∠DAC=90°.详解:如图,连接AC,Rt△ABC中,因为AB=BC,∠ABC=90°所以∠BAC=45°,由勾股定理得AC=2;△ACD中,因为AC2=4,AD2=1,CD2=5,所以AC2+AD2=CD2,所以∠DAC=90°,所以∠BAD=∠BAC+∠DAC=45°+90°=135°.故答案为135°.点睛:本题考查了勾股定理和勾股定理的逆定理的综合运用,直角三角形中已知两边的长,可用勾股定理求第三边的长,三角形中,已知三边的长,可用勾股定理的逆定理判定它是不是直角.23、(1)证明见解析;(2)存在点M的坐标为(0,2).【解析】分析:(1)在OC上截取OK=OE.连接EK,求出∠KCE=∠CEA,根据ASA推出△CKE≌△EAP,根据全等三角形的性质得出即可;(2)过点B作BM∥PE交y轴于点M,根据ASA推出△BCM≌△COE,根据全等三角形的性质得出BM=CE,求出BM=EP.根据平行四边形的判定得出四边形BMEP是平行四边形,即可求出答案.详解:(1)在OC上截取OK=OE.连接EK,如图1.∵OC=OA,∠COA=∠BA0=90°,∠OEK=∠OKE=45°.∵AP为正方形OCBA的外角平分线,∴∠BAP=45°,∴∠EKC=∠PAE=135°,∴CK=EA.∵EC⊥EP,∴∠CEF=∠COE=90°,∴∠CEO+∠KCE=90°,∠CEO+∠PEA=90°,∴∠KCE=∠CEA.在△CKE和△EAP中,∵,∴△CKE≌△EAP,∴EC=EP;(2)y轴上存在点M,使得四边形BMEP是平行四边形.如图,过点B作BM∥PE交y轴于点M,连接BP,EM,如图2,则∠CQB=∠CEP=90°,所以∠OCE=∠CBQ.在△BCM和△COE中,∵,∴△BCM≌△COE,∴BM=CE.∵CE=EP,∴BM=EP.∵BM∥EP,∴四边形BMEP是平行四边形.∵△BCM≌△COE,∴CM=OE=3,∴OM=CO﹣CM=2.故点M的坐标为(0,2).点睛:本题考查了正方形的性质,全等三角形的性质和判定,平行四边形的性质和判定的应用,能灵活运用知识点进行推理是解答此题的关键,综合性比较强,难度偏大.24、(1)乙文件袋每个进价为6元,则甲文件袋每个为8元;(2)①;②w=﹣2x+600,甲文具袋进60个,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论