河南省洛阳市名校2025年数学八下期末联考模拟试题含解析_第1页
河南省洛阳市名校2025年数学八下期末联考模拟试题含解析_第2页
河南省洛阳市名校2025年数学八下期末联考模拟试题含解析_第3页
河南省洛阳市名校2025年数学八下期末联考模拟试题含解析_第4页
河南省洛阳市名校2025年数学八下期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省洛阳市名校2025年数学八下期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在中,,是边上一条运动的线段(点不与点重合,点不与点重合),且,交于点,交于点,在从左至右的运动过程中,设BM=x,和的面积之和为y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.2.如图,在平面直角坐标系中,直线与双曲线交于、两点,且点的坐标为,将直线向上平移个单位,交双曲线于点,交轴于点,且的面积是.给出以下结论:(1);(2)点的坐标是;(3);(4).其中正确的结论有A.1个 B.2个 C.3个 D.4个3.已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标为()A.(-2,3) B.(2,-3) C.(3,-2) D.(-3,2)4.如图所示,函数y=k(x+1)与y=kxk<0A. B. C. D.5.如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD=()A.4 B.3C.2 D.16.如图,△ABC以点C为旋转中心,旋转后得到△EDC,已知AB=1.5,BC=4,AC=5,则DE=()A.1.5 B.3 C.4 D.57.某校为了了解学生在校午餐所需的时间,抽查了20名同学在校午餐所需的时间,获得如下数据(单位:分):10,12,15,10,1,18,19,18,20,34,22,25,20,18,18,20,15,1,21,1.若将这些数据分为5组,则组距是()A.4分 B.5分 C.6分 D.7分8.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是()A.平均数 B.中位数 C.众数 D.方差9.下列调查中,适合采用全面调查(普查)方式的是()A.对巢湖水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.节能灯厂家对一批节能灯管使用寿命的调查D.对某班50名学生视力情况的调查10.根据图1所示的程序,得到了如图y与x的函数图像,若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图像于点P、Q,连接OP、OQ.则以下结论:①x<0时,y=;②△OPQ的面积为定值;③x>0时,y随x的增大而增大;④MQ=2PM⑤∠POQ可以等于90°.其中正确结论序号是()A.①②③ B.②③④ C.③④⑤ D.②④⑤11.如图,在中,,点是边上一点,,则的大小是()A.72° B.54° C.38° D.36°12.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下列叙述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.点D是线段AC的中点 D.AD=BD=BC二、填空题(每题4分,共24分)13.已知关于函数,若它是一次函数,则______.14.已知,则代数式的值为_____.15.正方形、、、…按如图所示的方式放置.点、、、…和点、、、…分别在直线和轴上,则点的坐标是__________.(为正整数)16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_____.17.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________使四边形AECF是平行四边形(只填一个即可).18.某产品出现次品的概率为0.05,任意抽取这种产品400件,那么大约有_____件次品.三、解答题(共78分)19.(8分)某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答以下问题:土特产种类甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.20.(8分)黄岩岛是我国南沙群岛的一个小岛.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一艘外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.如图是渔政船及渔船与港口的距离s(海里)和渔船离开港口的时间t(时)之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离开港口的距离s和渔船离开港口的时间t之间的函数关系式;(2)已知两船相距不超过30海里时,可以用对讲机通话,在渔政船驶往黄岩岛的过程中,求两船可以用对讲机通话的时间长?21.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,1),B(3,2),C(1,4).(1)将△ABC先向下平移4个单位,再向右平移1个单位,画出第二次平移后的△A1B1C1.若将△A1B1C1看成是△ABC经过一次平移得到的,则平移距离是________.(2)以原点为对称中心,画出与△ABC成中心对称的△A2B2C2.22.(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).

(1)求直线AB的解析式.(2)求△OAC的面积.(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角角形?如果存在,求出点M的坐标;如果不存在,说明理由.23.(10分)小颖和同学一起去书店买书,他们先用60元买了一种科普书,又用60元买了一种文学书.科普书的价格比文学书高出一半,他们所买的科普书比所买的文学书少2本.(1)求他们买的科普书和文学书的价格各是多少元?(2)学校某月开展读书活动,班上同学让小颖帮助购买科普书和文学书共20本,且购买总费用不超过260元,求小颖至少购买多少本文学书?24.(10分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标.(2)判断以A,B,A1,B1为顶点的四边形的形状,请直接在答卷上填写答案.25.(12分)如图,在△ABC中,AD为BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)四边形AFCD是什么特殊的四边形?请说明理由.(2)填空:①若AB=AC,则四边形AFCD是_______形.②当△ABC满足条件______时,四边形AFCD是正方形.26.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)

参考答案一、选择题(每题4分,共48分)1、B【解析】【分析】不妨设BC=2a,∠B=∠C=α,BM=x,则CN=a-x,根据二次函数即可解决问题.【详解】不妨设BC=2a,∠B=∠C=α,BM=m,则CN=a−x,则有S阴=y=⋅x⋅xtanα+(a−x)⋅(a−x)tanα=tanα(m2+a2−2ax+x2)=tanα(2x2−2ax+a2)∴S阴的值先变小后变大,故选:B【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.2、C【解析】

(1)把A(4,a)代入,求得A为(4,2),然后代入求得k=8;(2)联立方程,解方程组即可求得B(-4,-2);

(3)根据同底等高的三角形相等,得出S△ABC=S△ABF;

(4)根据S△ABF=S△AOF+S△BOF列出,解得。【详解】解:(1)直线经过点,,,点在双曲线上,,故正确;(2)解得或,点的坐标是,故正确;(3)将直线向上平移个单位,交双曲线于点,交轴于点,,和是同底等高,,故错误;(4),,解得,故正确;故选:.【点睛】本题考查了反比例函数和一次函数的交点,待定系数法求反比例函数的解析式,三角形的面积等,求得交点坐标是解题的关键.3、B【解析】试题分析:根据点P在第四象限,所以P点的横坐标在x轴的正半轴上,纵坐标在y轴的负半轴上,由P点到x轴的距离为3,到y轴的距离为2,即可推出P点的横、纵坐标,从而得出(2,-3).故选B.考点:平面直角坐标系4、B【解析】

根据反比例函数和一次函数的图像特点解答即可.【详解】∵k<0∴反比例函数的图像只能在二、四象限,故排除答案A,D又一次函数的解析式为:y=k(x+1)(k<0)∴一次函数的图像过二、三、四象限故答案选择B.【点睛】本题考查的是反比例函数和一次函数的图像特征,反比例函数y=kx,当k>0时,函数图像过一、三象限,当k<0时,函数图像过二、四象限;一次函数y=kx+b,当k>0,b>0时,函数图像过一、二、三象限,当k>0,b<0时,函数图像过一、三、四象限,当k<0,b>0时,函数图像过一、二、四象限,当k<0,b<05、C【解析】

作PE⊥OB于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【详解】作PE⊥OB于E,

∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,

∴PE=PD,

∵PC∥OA,

∴∠BCP=∠AOB=2∠BOP=30°

∴在Rt△PCE中,PE=12PC=12×4=2,

故选【点睛】本题考查角平分线的性质、含30度角的直角三角形和三角形的外角性质,解题的关键是掌握角平分线的性质、含30度角的直角三角形和三角形的外角性质.6、A【解析】

根据旋转的性质,得出△ABC≌△EDC,再根据全等三角形的对应边相等即可得出结论.【详解】由旋转可得,△ABC≌△EDC,∴DE=AB=1.5,故选A.【点睛】本题主要考查了旋转的性质的运用,解题时注意:旋转前、后的图形全等.7、B【解析】

找出20个数据的最大值与最小值,求出它们的差,再除以5即得结果.【详解】解:根据题意得:(34-10)÷5=4.8.即组距为5分.故选B.【点睛】本题考查了频数分布表的相关知识,弄清题意,掌握求组距的方法是解题的关键.8、B【解析】

由于比赛设置了3个获奖名额,共有7名选手参加,故应根据中位数的意义分析.【详解】解:因为3位获奖者的分数肯定是7名参赛选手中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9、D【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】、对巢湖水质情况的调查适合抽样调查,故选项错误;、对端午节期间市场上粽子质量情况的调查适合抽样调查,故选项错误;、节能灯厂家对一批节能灯管使用寿命的调查适合抽样调查,故选项错误;、对某班50名学生视力情况的调查,适合全面调查,故选项正确.故选:.【点睛】本题考查了抽样调查和全面调查的区别,选择普遍还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、D【解析】

根据题意得到当x<0时,y=-,当x>0时,y=,设P(a,b),Q(c,d),求出ab=-2,cd=4,求出△OPQ的面积是3;x>0时,y随x的增大而减小;由ab=-2,cd=4得到MQ=2PM;因为∠POQ=90°也行,根据结论即可判断答案.【详解】解:①x<0,y=-,∴①错误;②当x<0时,y=-,当x>0时,y=,设P(a,b),Q(c,d),则ab=-2,cd=4,∴△OPQ的面积是(-a)b+cd=3,∴②正确;③x>0时,y随x的增大而减小,∴③错误;④∵ab=-2,cd=4,即MQ=2PM,∴④正确;⑤设PM=a,则OM=-.则PO2=PM2+OM2=a2+(-)2=a2+,QO2=MQ2+OM2=(2a)2+(-)2=4a2+,PQ2=PO2+QO2=a2++4a2+=(3a)2=9a2,整理得a4=2,∵a有解,∴∠POQ=90°可能存在,故⑤正确;正确的有②④⑤,故选D.【点睛】本题主要考查对反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能根据这些性质进行说理是解此题的关键.11、D【解析】

由BD=BC=AD,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC,则∠ABC=∠C=2x,在△ABC中,根据三角形的内角和定理列方程求解.【详解】解:∵BD=BC=AD,

∴设∠A=∠ABD=x,则∠C=∠CDB=2x,

又∵AB=AC,

∴∠ABC=∠C=2x,

在△ABC中,∠A+∠ABC+∠C=180°,

即x+2x+2x=180°,

解得x=36°,

即∠A=36°.

故选:D.【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的等边对等角的性质,三角形外角的性质,三角形内角和定理列方程求解.12、C【解析】分析:由△ABC中,AB=AC,∠A=36°,可求得∠ABC与∠C的度数,又由AB的垂直平分线DE交AC于D,交AB于E,根据线段垂直平分线的性质,可证得AD=BD,继而可求得∠ABD,∠DBC的度数,则可得BD平分∠ABC;又可求得∠BDC的度数,则可证得AD=BD=BC;可求得△BDC的周长等于AB+BC.详解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=(180°-36°)÷2=72°,∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC-∠ABD=36°=∠ABD,∴BD平分∠ABC;故A正确;∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故D正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故B正确;∵AD=BD>CD,∴D不是AC的中点,故C错误.故选C.点睛:此题考查了线段垂直平分线的性质与等腰三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.二、填空题(每题4分,共24分)13、【解析】

根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2,可得答案.【详解】由y=是一次函数,得m2-24=2且m-2≠0,解得m=-2,故答案为:-2.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2.14、3【解析】

把已知值代入,根据二次根式的性质计算化简,灵活运用完全平方公式.【详解】解:因为所以【点睛】二次根式的化简求值.15、【解析】分析:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,又An的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标].详解:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),∴Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,又An的横坐标数列为An=2n-1-1,所以纵坐标为2n-1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n-1,2n-1).故答案为(2n-1,2n-1).点睛:本题主要考查函数图象上点的坐标特征及正方形的性质,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.16、1【解析】

试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:×DE×BC=×10×3=1,故答案为1.考点:角平分线的性质.17、AF=CE(答案不唯一).【解析】

根据平行四边形性质得出AD∥BC,得出AF∥CE,当AF=CE时,四边形AECF是平行四边形;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE或FD=EB.根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC.添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四边形AECF是平行四边形.18、1.【解析】

利用总数×出现次品的概率=次品的数量,进而得出答案.【详解】解:由题意可得:次品数量大约为400×0.05=1.故答案为1.【点睛】本题考查概率的意义,正确把握概率的定义是解题的关键.三、解答题(共78分)19、(1)y=20―3x;(2)三种方案,即:方案一:甲种3辆乙种11辆丙种6辆方案二:甲种4辆乙种8辆丙种8辆方案三:甲种5辆乙种5辆丙种10辆(3)方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元。【解析】

(1)由8x+6y+5(20-x-y)=120得y=20-3x(2)由得3≤x≤且x为正整数,故3,4,5车辆安排有三种方案:方案一:甲种车3辆;乙种车11辆;丙种车6辆;方案二:甲种车4辆;乙种车8辆;丙种车8辆;方案三:甲种车5辆;乙种车5辆;丙种车10辆;(3)设此次销售利润为w元.w=8x×12+6(20-x)×16+5[20-x-(20-3x)]×10=1920-92xw随x的增大而减小,由(2):x=3,4,5∴当x=3时,W最大=1644(百元)=16.44万元答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元20、(1)答案见解析;(2)0.8小时.【解析】

(1)由图象可得出渔船离港口的距离s和它离开港口的时间t的函数关系式,分为三段求函数关系式;(2)在渔政船驶往黄岩岛的过程中,8<t≤13,渔船与渔政船相距30海里,有两种可能:①s渔﹣s渔政=30,②s渔政﹣s渔=30,将函数关系式代入,列方程求t.【详解】解:(1)当0≤t≤5时,s=30t,当5<t≤8时,s=150,当8<t≤13时,s=﹣30t+390;(2)s渔=﹣30t+390,s渔政=45t﹣360,分两种情况:①s渔﹣s渔政=30,﹣30t+390﹣(45t﹣360)=30,解得t=(或9.6);②s渔政﹣s渔=30,45t﹣360﹣(﹣30t+390)=30,解得t=(或10.4)所以10.4﹣9.6=0.8(小时)所以,两船可以用对讲机通话的时间长为0.8小时.【点睛】本题考查了一次函数的应用.关键是根据图象求出渔船的分段函数的解析式及渔政船行驶的函数关系式.21、(1),见解析;(2)见解析.【解析】

(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再利用勾股定理列式计算即可得解;

(2)根据网格结构找出点A、B、C以原点为对称中心的对称点A2、B2、C2的位置,然后顺次连接即可.【详解】解:(1)△A1B1C1如图所示,平移距离为:=;故答案为:.(2)如(1)图中所作.【点睛】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22、(1)y=﹣x+6;(2)12;(3)点M的坐标为(0,-2)或(0,-6).【解析】分析:(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)分两种情形①过点A作AB的垂线AM交y轴与M.②过点B作BM′⊥AB交y轴与M′,求出点M与M′坐标即可.详解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)如图,①过点A作AB的垂线AM交y轴与M.∵直线AB的解析式为y=-x+6,∴直线AM的解析式为y=x-2,∴M(0,-2).②过点B作BM′⊥AB交y轴与M′,则直线BM′的解析式为y=x-6,∴M′(0,-6),综上所述,满足条件的点M的坐标为(0,-2)或(0,-6).点睛:本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,学会用分类讨论的思想思考问题是解题关键.23、(1)科普书每本15元,文学书每本10元;(2)至少购买文学书8本.【解析】

(1)设文学书的价格为每本元,则文学书每本元,再根据科普书比所买的文学书少2本的等量关系,列分式方程,解分式方程即可;(2)设购买文学书本,则购买科普书(20-y)本,根据购买总费用不超过260元,列出不等式,再解不等式,即可确定答案.【详解】(1)设文学书的价格为每本元,解之得:经检验x=10是原方程的根.科普书的价格=10×=15元;答:科普书每本15元,文学书每本10元.(2)设购买文学书本,则解之得:y≥8答:至少购买文学书8本.【点睛】本题考查了运用分式方程和不等式解决实际问题,解得这类题的关键是设出合适的未知数,表示相关量,然后根据等量或不等关系列出方程解答.24、(1)A1(3,4)、B1(0,2);(2)四边形ABA1B1是平行四边形.【解析】

(1)由于△OAB绕O点旋转180°得到△OA1B1,利用关于原点中心对称的点的坐标特征得到A1,B1的坐标,然后描点,再连结OB1、OA1和A1B1即可;

(2)根据中心对称的性质得OA=OA1,OB=OB1,则利用对角线互相平分得四边形为平行四边形可判断四边形ABA1B1为平行四边形.【详解】解:(1)如图图所示,△OA1B1即为所求,A1(3,4)、B1(0,2);(2)由图可知,OB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论