湖北省黄冈市黄梅实验中学2025届数学八下期末统考模拟试题含解析_第1页
湖北省黄冈市黄梅实验中学2025届数学八下期末统考模拟试题含解析_第2页
湖北省黄冈市黄梅实验中学2025届数学八下期末统考模拟试题含解析_第3页
湖北省黄冈市黄梅实验中学2025届数学八下期末统考模拟试题含解析_第4页
湖北省黄冈市黄梅实验中学2025届数学八下期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省黄冈市黄梅实验中学2025届数学八下期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.一次函数y=-3x+2的图象不经过()A.第四象限 B.第三象限 C.第二象限 D.第一象限2.若,两点都在直线上,则与的大小关系是()A. B. C. D.无法确定3.已知温州至杭州铁路长为380千米,从温州到杭州乘“G”列动车比乘“D”列动车少用20分钟,“G”列动车比“D”列动车每小时多行驶30千米,设“G”列动车速度为每小时x千米,则可列方程为()A. B.C. D.4.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,EC=2,则下列结论不正确的是()A.ED=2 B.AE=4C.BC= D.AB=85.下列四组线段中,能组成直角三角形的是A.,, B.,,C.,, D.,,6.计算3-2的结果是()A.9 B.-9 C. D.7.已知,如图,,,,的垂直平分交于点,则的长为()A. B. C. D.8.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点的坐标表示正确的是A.(5,30) B.(8,10) C.(9,10) D.(10,10)9.五一小长假,李军与张明相约去宁波旅游,李军从温岭北上沿海高速,同时张明从玉环芦浦上沿海高速,温岭北与玉环芦浦相距44千米,两人约好在三门服务区集合,李军由于离三门近,行驶了1.2小时先到达三门服务站等候张明,张明走了1.4小时到达三门服务站。在整个过程中,两人均保持各自的速度匀速行驶,两人相距的路程y千米与张明行驶的时间x小时的关系如图所示,下列说法错误的是(

)A.李军的速度是80千米/小时B.张明的速度是100千米/小时C.玉环芦浦至三门服务站的路程是140千米D.温岭北至三门服务站的路程是44千米10.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y1<y2二、填空题(每小题3分,共24分)11.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是________.12.的平方根为_______13.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去记正方形ABCD的边为,按上述方法所作的正方形的边长依次为、、、,根据以上规律写出的表达式______.14.顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.15.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.16.如图,以正方形ABCD的BC边向外作正六边形BEFGHC,则∠ABE=___________度.17.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4……的斜边OA1,OA2,OA3,OA4……都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=……=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3OA3=OC4……,则依此规律,点A2018的纵坐标为___.18.不等式9﹣3x>0的非负整数解是_____.三、解答题(共66分)19.(10分)如图:是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行使8千米时,收费应为元;(2)从图象上你能获得哪些信息?(请写出2条)①________②____________________________(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.20.(6分)计算:(1);(2).21.(6分)如图,已知直线交轴于点,交轴于点,点,是直线上的一个动点.(1)求点的坐标,并求当时点的坐标;(2)如图,以为边在上方作正方形,请画出当正方形的另一顶点也落在直线上的图形,并求出此时点的坐标;(3)当点在上运动时,点是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.22.(8分)阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积他把这种解决问题的方法称为构图法.请回答:

(1)①图1中△ABC的面积为________;②图1中过O点画一条线段MN,使MN=2AB,且M、N在格点上.(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).利用构图法在图2中画出三边长分别为、2、的格点△DEF.23.(8分)暑假期间,商洛剧院举行专场音乐会,成人票每张20元,学生票每张5元,为了吸引广大师生来听音乐会,剧院制定了两种优惠方案:方案一:购买一张成人票赠送一张学生票;方案二:成人票和学生票都打九折.我校现有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为(人),付款总金额为(元),请分别确定两种优惠方案中与的函数关系式;(2)请你结合参加听音乐会的学生人数,计算说明怎样购票花费少?24.(8分)已知一次函数y=kx+b的图象经过点A(−1,−1)和点B(1,−3).求:(1)求一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.25.(10分)小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量q(升)与行驶时间t(小时)之间的关系如图所示.根据图象回答下列问题:(1)小汽车行驶小时后加油,中途加油升;(2)求加油前油箱余油量q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速为80km/h,要到,达目的地,油箱中的油是否够用?请说明理由.26.(10分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据一次函数的图像与性质,结合k=-3<0,b=2>0求解即可.【详解】∵k=-3<0,b=2>0,∴一次函数y=-3x+2的图象经过一二四象限,不经过第三象限.故选B.【点睛】题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.2、C【解析】

根据一次函数的性质进行判断即可.【详解】解:∵直线的K=2>0,∴y随x的增大而增大,∵-4<-2,∴.故选C.【点睛】本题考查了一次函数的增减性,当K>0时,y随x的增大而增大,当K<0时,y随x的增大而减小.3、D【解析】

设“G”列动车速度为每小时x千米,则“D”列动车速度为每小时(x-30)千米,根据时间=路程÷速度结合行驶380千米“G”列动车比“D”列动车少用小时(20分钟),即可得出关于x的分式方程,此题得解.【详解】解:设“G”列动车速度为每小时x千米,则“D”列动车速度为每小时(x﹣30)千米,依题意,得:.故选D.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.4、D【解析】

根据角平分线的性质以及锐角三角函数的定义和性质计算出各线段长度逐项进行判断即可.【详解】∵∠ACB=90°,∠A=30°∴∵BE平分∠ABC,ED⊥AB,EC=2∴,,故选项A正确∴,故选项B正确∴,故选项C正确∴,故选项D错误故答案为:D.【点睛】本题考查了三角形的线段长问题,掌握角平分线的性质以及锐角三角函数的定义是解题的关键.5、D【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.1²+2²≠3²,故不是直角三角形,故本选项错误;

B.2²+3²≠4²故不是直角三角形,故本选项错误;

C.2²+4²≠5²,故不是直角三角形,故本选项错误;

D.3²+4²=5²,故是直角三角形,故本选项正确.

故选D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6、C【解析】

直接利用负指数幂的性质进而得出答案.【详解】解:.故选:C.【点睛】此题主要考查了负指数幂的性质,正确掌握负指数幂的性质是解题关键.7、D【解析】

根据中位线的性质得出,,然后根据勾股定理即可求出DE的长.【详解】垂直平分,为中边上的中位线,∴,在中,,.故选D.【点睛】本题考查了三角形的线段长问题,掌握中位线的性质、勾股定理是解题的关键.8、C【解析】

先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【详解】如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10);故选C.【点睛】此题考查了坐标确定位置,根据题意确定出DC=9,AO=10是解本题的关键.9、D【解析】

利用函数图像,可知1.2小时张明走了20千米,利用路程÷时间=速度,就可求出张明的速度,从而可求出李军的速度,可对A,B作出判断;再利用路程=速度×时间,就可求出玉环芦浦至三门服务站的路程和温岭北至三门服务站的路程,可对C,D作出判断.【详解】解:∵1.2小时,他们两人相距20千米,张明走了1.4小时到达三门服务站,即两人相距路程为0千米,∴张明的速度为:20÷(1.4-1.2)=100千米/时,故B正确;李军的速度为:100-(44-20)÷1.2=100-20=80千米/时,故A正确;∴玉环芦浦至三门服务站的路程为100×1.4=140千米。故C正确;∴温岭北至三门服务站的路程为1.2×80=96千米,故D错误;故答案为:D.【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.10、B【解析】

先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.二、填空题(每小题3分,共24分)11、-1≤a≤【解析】

根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.【详解】解:反比例函数经过点A和点C.当反比例函数经过点A时,即=3,解得:a=±(负根舍去);当反比例函数经过点C时,即=3,解得:a=1±(负根舍去),则-1≤a≤.故答案为:-1≤a≤.【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12、【解析】

利用平方根立方根定义计算即可.【详解】∵,∴的平方根是±,故答案为±.【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.13、

【解析】

根据正方形对角线等于边长的倍得出规律即可.【详解】由题意得,a1=1,

a2=a1=,a3=a2=()2,a4=a3=()3,…,an=an-1=()n-1.=[()n-1]2=故答案为:【点睛】本题主要考查了正方形的性质,熟记正方形对角线等于边长的倍是解题的关键,要注意的指数的变化规律.14、菱形【解析】【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.【详解】如图连接BD,AC由矩形性质可得AC=BD,因为,E,F,G,H是各边的中点,所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC所以,EG=EF=EF=FG,所以,所得四边形EFGH是菱形.故答案为:菱形【点睛】本题考核知识点:矩形性质,菱形判定.解题关键点:由三角形中位线性质证边相等.15、【解析】试题分析:首先设点P的坐标为(x,y),根据矩形的周长可得:2(x+y)=10,则y=-x+5,即该直线的函数解析式为y=-x+5.16、1【解析】

分别求出正方形ABCD的内角∠ABC和正六边形BEFGHC的内角∠CBE的度数,进一步即可求出答案.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵六边形BEFGHC是正六边形,∴∠CBE=,∴∠ABE=360°-(∠ABC+∠CBE)=360°-(90°+120°)=1°.故答案为:1.【点睛】本题主要考查了正多边形的内角问题,属于基础题型,熟练掌握多边形的内角和公式是解题的关键.17、3×()1【解析】

根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2018=3×()1.【详解】∵∠A2OC2=30°,OA1=OC2=3,

∴;

∵,

∴;

∵,

∴,

∴,

而2018=4×504+2,

∴点A2018在y轴的正半轴上,

∴点A2018的纵坐标为:.

故答案为:.【点睛】本题考查的知识点是规律型和点的坐标,解题关键是利用发现的规律进行解答.18、0、1、1【解析】首先移项,然后化系数为1即可求出不等式的解集,最后取非负整数即可求解.解:9﹣3x>0,∴﹣3x>﹣9,∴x<3,∴x的非负整数解是0、1、1.故答案为0、1、1.三、解答题(共66分)19、(1)11;(2)如:出租车起步价(3千米内)为5元;超出3千米,每千米加收1.2元等;(3).【解析】试题分析:图象是分段函数,需要分别观察x轴y轴表示的意义,再利用图象过已知点,利用待定系数法求函数关系式.(1)由图知当行使8千米时,收费应为11元.(2)如:出租车起步价(3千米内)为5元;超出3千米,每千米加收1.2元等(3)设函数是y=kx+b(k图象过(3,5)(8,11),所以,解得,所以(x).20、(1)6(2)9【解析】

(1)先计算算术平方根,零指数幂,然后依次计算即可(2)先利用完全平方公式进行计算,再把二次根式化为最简,进行计算即可【详解】(1)3+2+1=6(3)3+4+4-4+2=9【点睛】此题考查二次根式的混合运算,掌握运算法则是解题关键21、(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【解析】

(1)利用待定系数法求出A,B两点坐标,再构建方程即可解决问题.

(2)分两种情形:①如图1,当点F在直线上时,过点D作DG⊥x轴于点G,过点F作FH⊥x轴于点H,②如图2,当点E在直线上时,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,过点D作DM⊥EH于点M,分别求解即可解决问题.

(3)由(2)①可知:点F的坐标F(2m-7,m+3),令x=2m-7,y=m+3,消去m即可得到.【详解】解:(1)令,则,解得,,,易得,由得,,解得,由解得或2.8,∴D(1.2,1.6)或(2.8,-1.6).(2)①如图1,当点在直线上时,过点作轴于点,过点作轴于点,图1设,易证,,则,,,得,;②如图2,当点在直线上时,过点作轴于点,过点作轴于点,图2过点作于点,同①可得,,则,,,得,;(3)设D(m,-2m+4),由(2)①可知:F(2m-7,m+3),

令x=2m-7,y=m+3,消去m得到:点在直线上运动.故答案为:(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【点睛】本题属于一次函数综合题,考查正方形的性质,三角形的面积,全等三角形的判定和性质,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.22、(1)①,②见解析;(2)见解析.【解析】分析:(1)①如图3,由S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF结合已知条件即可求得△ABC的面积了;②如图4,对照图形过点O作OM∥AB,且使OM=AB,作ON∥AB,且使ON=AB,则根据过直线为一点有且只有一条直线平行于已知直线可知点O、M、N在同一直线上,由此所得线段MN=2AB;(2)如图5,按照题中构图法结合勾股定理画出△DEF即可.详解:(1)①如图3,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF=;②如图所示,线段MN即为所求:(2)如图5所示,△DEF即为所求.点睛:(1)“构造如图3所示的正方形DECF,由此得到,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF”是解答第1小题的关键;(2“由勾股定理在6×6网格中找到使DE=,EF=,DF=的点D、E、F的位置”是解答第2小题的关键.23、(1),;(2)①当购买24张票时,两种方案付款一样多,②时,,方案①付款较少,③当时,,方案②付款较少.【解析】

(1)首先根据方案①:付款总金额=购买成人票金额+除去4人后的学生票金额;方案②:付款总金额=(购买成人票金额+购买学生票金额)打折率,列出关于的函数关系式;(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数,再分三种情况讨论.【详解】(1)按方案①可得:按方案②可得:(2)因为,①当时,得,解得,∴当购买24张票时,两种方案付款一样多.②当时,得,解得,∴时,,方案①付款较少.③当时,得,解得,当时,,方案②付款较少.【点睛】本题根据实际问题考查了一次函数的应用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点的取值,再进一步讨论.24、(1)y=-x-2;(2)2;(3)P(-)【解析】【分析】(1)把A、B两点代入可求得k、b的值,可得到一次函数的表达式;(2)分别令y=0、x=0可求得直线与两坐标轴的两交点坐标,可求得所围成的三角形的面积;(3)根据轴对称的性质,找到点A关于x的对称点A′,连接BA′,则BA′与x轴的交点即为点P的位置,求出直线BA′的解析式,可得出点P的坐标.【详解】(1)把A(-1,-1)B(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论