云南省文山州马关县一中2025届高二数学第二学期期末复习检测模拟试题含解析_第1页
云南省文山州马关县一中2025届高二数学第二学期期末复习检测模拟试题含解析_第2页
云南省文山州马关县一中2025届高二数学第二学期期末复习检测模拟试题含解析_第3页
云南省文山州马关县一中2025届高二数学第二学期期末复习检测模拟试题含解析_第4页
云南省文山州马关县一中2025届高二数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省文山州马关县一中2025届高二数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象大致为A. B. C. D.2.函数f(x)与它的导函数f'(x)的大致图象如图所示,设g(x)=f(x)exA.15 B.25 C.33.已知双曲线的离心率为,焦点是,,则双曲线方程为()A. B.C. D.4.某地区一次联考的数学成绩近似地服从正态分布,已知,现随机从这次考试的成绩中抽取100个样本,则成绩低于48分的样本个数大约为()A.6 B.4 C.94 D.965.执行如图所示的程序框图,则输出的k的值为()A.4 B.5 C.6 D.76.已知数列,则是这个数列的()A.第项 B.第项 C.第项 D.第项7.某单位为了了解用电量(度)与气温()之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温()101318-1用电量(度)38342464由表中数据得回归直线方程中的,预测当气温为时,用电量度数约为()A.64 B.65 C.68 D.708.已知是两个非空集合,定义集合,则结果是()A. B. C. D.9.在正方体中,E是棱的中点,点M,N分别是线段与线段上的动点,当点M,N之间的距离最小时,异面直线与所成角的余弦值为()A. B. C.D10.某射手射击一次击中靶心的概率是,如果他在同样的条件下连续射击10次,设射手击中靶心的次数为,若,,则()A.0.7 B.0.6 C.0.4 D.0.311.将两枚质地均匀的骰子各掷一次,设事件{两个点数互不相同},{出现一个5点},则()A. B. C. D.12.已知变量之间的线性回归方程为,且变量之间的一组相关数据如表所示,则下列说法错误的是()A.变量之间呈现负相关关系B.的值等于5C.变量之间的相关系数D.由表格数据知,该回归直线必过点二、填空题:本题共4小题,每小题5分,共20分。13.在中,内角,,满足,且,则的值为________.14.在极坐标系中,点到圆的圆心的距离为__________.15.二项式的展开式中,含的系数为_______.16.已知函数,若,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响且无平局.求:(1)前三局比赛甲队领先的概率;(2)设本场比赛的局数为,求的概率分布和数学期望.(用分数表示)18.(12分)互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式.某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究.采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折.已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.19.(12分)某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.表1:甲套设备的样本的频数分布表质量指标值[95,100)[100,105)[105,110)[110,115)[115,120)[120,125]频数14192051图1:乙套设备的样本的频率分布直方图(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;甲套设备乙套设备合计合格品不合格品合计(2)根据表1和图1,对两套设备的优劣进行比较;(3)将频率视为概率.若从甲套设备生产的大量产品中,随机抽取3件产品,记抽到的不合格品的个数为,求的期望.附:P(K2≥k0)0.150.100.0500.0250.010k02.0722.7063.8415.0246.635.20.(12分)已知函数.(1)讨论函数的单调性;(2)当时,,求证:.21.(12分)已知二项式的展开式中第五项为常数项.(1)求展开式中二项式系数最大的项;(2)求展开式中有理项的系数和.22.(10分)为了更好地服务民众,某共享单车公司通过向共享单车用户随机派送每张面额为0元,1元,2元的三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得1元奖券、获得2元奖券的概率分别是0.5、0.2,且各次获取骑行券的结果相互独立.(I)求用户骑行一次获得0元奖券的概率;(II)若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由于,故排除选项.,所以函数为奇函数,图象关于原点对称,排除选项.,排除选项,故选B.2、B【解析】

结合图象可得到f'(x)-f(x)<0成立的x的取值范围,从而可得到g(x)【详解】由图象可知,y轴左侧上方图象为f'(x)的图象,下方图象为对g(x)求导,可得g'(x)=f'(x)-f(x)ex,结合图象可知x∈(0,1)和x∈(4,5)时,f'(x)-f(x)<0,即g(x)在0,1和本题考查了函数的单调性问题,考查了数形结合的数学思想,考查了导数的应用,属于中档题.3、A【解析】由题意e=2,c=4,由e=,可解得a=2,又b2=c2﹣a2,解得b2=12所以双曲线的方程为.故答案为.故答案选A.4、B【解析】

由已知根据正态分布的特点,可得,根据对称性,则,乘以样本个数得答案.【详解】由题意,知,可得,又由对称轴为,所以,所以成绩小于分的样本个数为个.故选:B.本题考查正态分布曲线的特点及曲线所表示的意义,以及考查正态分布中两个量和的应用,其中熟记正态分布的对称性是解答的关键,属于基础题.5、A【解析】试题分析:模拟运算:k=0,S=0,S<100成立S=0+2S=1+2S=3+2S=7+2S=15+2S=15+2S=31+2S=63+26=127,k=6+1=7,S=127<100考点:程序框图.6、B【解析】解:数列即:,据此可得数列的通项公式为:,由解得:,即是这个数列的第项.本题选择B选项.7、C【解析】

先求解出气温和用电量的平均数,然后将样本点中心代入回归直线方程,求解出的值,即可预测气温为时的用电量.【详解】因为,所以样本点中心,所以,所以,所以回归直线方程为:,当时,.故选:C.本题考查回归直线方程的求解以及利用回归直线方程估计数值,难度较易.注意回归直线方程过样本点的中心.8、C【解析】

根据定义集合分析元素特征即可得解.【详解】因为表示元素在中但不属于,那么表示元素在中且在中即,故选C.本题考查了集合的运算,结合题中给出的运算规则即可进行运算,属于基础题,9、A【解析】

以A为坐标原点,以,,为x,y,z轴正向建系,设,,,,,设,得,求出取最小值时值,然后求的夹角的余弦值.【详解】以A为坐标原点,以,,为x,y,z轴正向建系,设,,,,,设,由得,则,当即,时,取最小值.此时,,令.得.故选:A.本题考查求异面直线所成的角,解题关键求得的取最小值时的位置.解题方法是建立空间直角坐标系,用空间向量法表示距离、求角.10、B【解析】

随机变量X~B(10,p),所以DX=10p(1−p)=2.4,可得p=0.4或p=0.6,又因为P(X=3)<P(X=7),即,可得p>,所以p=0.6.【详解】依题意,X为击中目标的次数,所以随机变量服从二项分布X∼B(10,p),所以D(X)=10p(1−p)=2.4,所以p=0.4或p=0.6,又因为P(X=3)<P(X=7),即,所以1−p<p,即p>,所以p=0.6.故选:B.本题考查二项分布的概率计算、期望与方差,根据二项分布概率计算公式进行求解即可,属于简单题.11、A【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30,事件B:出现一个5点,有10种,∴,本题选择A选项.点睛:条件概率的计算方法:(1)利用定义,求P(A)和P(AB),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),然后求概率值.12、C【解析】分析:根据线性回归方程的性质依次判断各选项即可.详解:对于A:根据b的正负即可判断正负相关关系.线性回归方程为,b=﹣0.7<0,负相关.对于B:根据表中数据:=1.可得=2.即,解得:m=3.对于C:相关系数和斜率不是一回事,只有当样本点都落在直线上是才满足两者相等,这个题目显然不满足,故不正确.对于D:由线性回归方程一定过(,),即(1,2).故选:C.点睛:本题考查了线性回归方程的求法及应用,属于基础题,对于回归方程,一定要注意隐含条件,样本中心满足回归方程,再者计算精准,正确理解题意,应用回归方程对总体进行估计.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用二倍角公式得出,再利用正弦定理转化,后用余弦定理求得,再利用正弦定理即可【详解】由得,,,根据正弦定理可得,,根据余弦定理本题考查解三角形中正弦定理进行边角转化,余弦定理求角,以及三角形中两角和正弦与第三角正弦的关系14、【解析】分析:先根据圆的极坐标方程转化成直角坐标系方程,求得圆心坐标,把点转化成直角坐标,最后利用两点间的距离公式求得答案.详解:,,,即,圆心为,点的直角坐标为,.故答案为:.点睛:求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解.使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标.15、1【解析】

根据题意,由展开式的通项,令,可得,将代入通项计算可得答案.【详解】根据题意,二项式的展开式的通项为,

令,可得,

此时,

即含的系数为1,

故答案为:1.本题考查二项式定理的应用,关键是掌握二项展开式的通项公式,属于中档题.16、.【解析】

作出函数f(x)的图象,设f(a)=f(b)=t,根据否定,转化为关于t的函数,构造函数,求出函数的导数,利用导数研究函数的单调性和取值范围即可.【详解】作出函数f(x)的图象如图:设f(a)=f(b)=t,则0<t≤,∵a<b,∴a≤1,b>﹣1,则f(a)=ea=t,f(b)=2b﹣1=t,则a=lnt,b=(t+1),则a﹣2b=lnt﹣t﹣1,设g(t)=lnt﹣t﹣1,0<t≤,函数的导数g′(t)=﹣1=,则当0<t≤时g′(t)>0,此时函数g(t)为增函数,∴g(t)≤g()=ln﹣﹣1=﹣﹣2,即实数a﹣2b的取值范围为(﹣∞,﹣﹣2],故答案为:(﹣∞,﹣﹣2].本题主要考查分段函数的应用,涉及函数与方程的关系,利用换元法转化为关于t的函数,构造函数,求函数的导数,利用导数研究函数的单调性和最值是解决本题的关键.综合性较强.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析.【解析】

(1)分为甲队胜三局和甲队胜二局两种情况,概率相加得到答案.(2)本场比赛的局数为有3,4,5三种情况,分别计算概率得到分布列,最后计算得到答案.【详解】解:(1)设“甲队胜三局”为事件,“甲队胜二局”为事件,则,,所以,前三局比赛甲队领先的概率为(2)甲队胜三局或乙胜三局,甲队或乙队前三局胜局,第局获胜甲队或乙队前四局胜局,第局获胜的分部列为:数学期望为本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和解决问题的能力.18、(1);(2)440【解析】

(1)先计算出选取的人中,全都是高于岁的概率,然后用减去这个概率,求得至少有人的年龄低于岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望.【详解】(1)设事件表示至少有1人的年龄低于45岁,则.(2)由题意知,以手机支付作为首选支付方式的概率为.设表示销售的10件商品中以手机支付为首选支付的商品件数,则,设表示销售额,则,所以销售额的数学期望(元).本小题主要考查利用对立事件来计算古典概型概率问题,考查二项分布的识别和期望的计算,考查随机变量线性运算后的数学期望的计算.19、(1)见解析;(2)见解析;(3)【解析】试题分析:(1)根据表1和图1即可完成填表,再由将数据代入计算得即把握认为产品的质量指标值与甲、乙两套设备的选择有关(2)根据题意计算甲、乙两套设备生产的合格品的概率,乙套设备生产的产品的质量指标值与甲套设备相比较为分散,从而做出判断(3)根据题意知满足,代入即可求得结果解析:(1)根据表1和图1得到列联表甲套设备乙套设备合计合格品484391不合格品279合计5050100将列联表中的数据代入公式计算得∵,∴有90%的把握认为产品的质量指标值与甲、乙两套设备的选择有关(2)根据表1和图1可知,甲套设备生产的合格品的概率约为,乙套设备生产的合格品的概率约为,甲套设备生产的产品的质量指标值主要集中在[105,115)之间,乙套设备生产的产品的质量指标值与甲套设备相比较为分散.因此,可以认为甲套设备生产的合格品的概率更高,且质量指标值更稳定,从而甲套设备优于乙套设备.(3)由题知,∴.20、(1)见解析;(2)证明见解析【解析】

(1)由f(x)含有参数a,单调性和a的取值有关,通过分类讨论说明导函数的正负,进而得到结论;(2)法一:将已知变形,对a分类讨论研究的正负,当与时,通过单调性可直接说明,当时,可得g(x)的最大值为,利用导数解得结论.法二:分析时,且使得已知不成立;当时,利用分离变量法求解证明.【详解】(1),①当时,由得,得,所以在上单调递增;②当时,由得,解得,所以在上单调递增,在在上单调递减;(2)法一:由得(*),设,则,①当时,,所以在上单调递增,,可知且时,,,可知(*)式不成立;②当时,,所以在上单调递减,,可知(*)式成立;③当时,由得,所以在上单调递增,可知在上单调递减,所以,由(*)式得,设,则,所以在上单调递减,而,h(1)=1-2=-1<0,所以存在t,使得h(t)=0,由得;综上所述,可知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论