




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江宁波市余姚中学2024-2025学年高二下数学期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数y=sin2x的图象可能是A. B.C. D.2.已知且,则的最大值为()A. B. C. D.3.在一次期中考试中,数学不及格的人数占,语文不及格占,两门都不及格占,若一名学生语文及格,则该生数学不及格的概率为()A. B. C. D.4.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3 C.92cm3 D.84cm35.不等式的解集是()A.或 B.C.或 D.6.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件.其长度误差落在区间内的概率为()(附:若随机变量服从正态分布N,则,)A. B. C. D.7.已知:,,且,若恒成立,则实数的取值范围是()A. B. C. D.8.若双曲线的一条渐近线经过点,则此双曲线的离心率为()A. B. C. D.9.已知函数,若存在,使得有解,则实数的取值范围是()A. B. C. D.10.且,可进行如下“分解”:若的“分解”中有一个数是2019,则()A.44 B.45 C.46 D.4711.()A.2 B.1 C.0 D.12.设函数的定义域,函数y=ln(1-x)的定义域为,则A.(1,2) B.(1,2] C.(-2,1) D.[-2,1)二、填空题:本题共4小题,每小题5分,共20分。13.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程,若变量增加一个单位时,则平均增加5个单位;③线性回归方程所在直线必过;④曲线上的点与该点的坐标之间具有相关关系;⑤在一个列联表中,由计算得,则其两个变量之间有关系的可能性是.其中错误的是________.14.已知f(x)是定义在(﹣∞,+∞)上周期为2的偶函数,当x∈[0,1]时,f(x)=2x﹣1,则f(log23)=_____15.参数方程所表示的曲线与轴的交点坐标是______.16.的二项展开式中项的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在中,D是边BC上一点,,,.(1)求DC的长;(2)若,求的面积.18.(12分)在中,内角所对的边分别为,已知的面积为.(1)求和的值;(2)求的值.19.(12分)设函数.(1)当时,求的单调区间;(2)当时,恒成立,求的取值范围;(3)求证:当时,.20.(12分)“蛟龙号”载人潜水艇执行某次任务时从海底带回来某种生物.甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况的研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为,假定试验后生物成活,则称该次试验成功,如果生物不成活,则称该次试验失败.(1)甲小组做了三次试验,求至少两次试验成功的概率;(2)如果乙小组成功了4次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率;(3)若甲乙两小组各进行2次试验,记试验成功的总次数为随机变量X,求X的概率分布与数学期望.21.(12分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长半径的圆与直线相切.(1)求与;(2)设该椭圆的左、右焦点分别为和,直线过且与轴垂直,动直线与轴垂直,交与点.求线段垂直平分线与的交点的轨迹方程,并指明曲线类型.22.(10分)已知函数,且当时,取得极值为.(1)求的解析式;(2)若关于的方程在上有两个不同的实数解,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.2、A【解析】
根据绝对值三角不等式可知;根据可得,根据的范围可得,根据二次函数的性质可求得结果.【详解】由题意得:当,即时,即:,即的最大值为:本题正确选项:本题考查函数最值的求解,难点在于对于绝对值的处理,关键是能够将函数放缩为关于的二次函数的形式,从而根据二次函数性质求解得到最值.3、A【解析】
记“一名学生语文及格”为事件A,“该生数学不及格”为事件B,所求即为,根据条件概率的计算公式,和题设数据,即得解.【详解】记“一名学生语文及格”为事件A,“该生数学不及格”为事件B,所求即为:故选:A本题考查了条件概率的计算,考查了学生概念理解,实际应用,数学运算的能力,属于基础题.4、B【解析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=1.故选B.考点:由三视图求面积、体积.5、D【解析】
先求解出不等式,然后用集合表示即可。【详解】解:,即,即,故不等式的解集是,故选D。本题是集合问题,解题的关键是正确求解绝对值不等式和规范答题。6、B【解析】
利用原则,分别求出的值,再利用对称性求出.【详解】正态分布中,,所以,,所以,故选B.本题考查正态分布知识,考查利用正态分布曲线的对称性求随机变量在给定区间的概率.7、A【解析】
若恒成立,则的最小值大于,利用均值定理及“1”的代换求得的最小值,进而求解即可.【详解】由题,因为,,,所以,当且仅当,即,时等号成立,因为恒成立,则,即,解得,故选:A本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.8、D【解析】因为双曲线的一条渐近线经过点(3,-4),故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线共渐近线的可设为;(2)若渐近线方程为,则可设为;(3)双曲线的焦点到渐近线的距离等于虚半轴长;(4)的一条渐近线的斜率为.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.9、B【解析】
先将化为,再令,则问题转化为:,然后通过导数求得的最大值代入可得.【详解】若存在,使得有解,即存在,使得,令,则问题转化为:,因为,当时,;当时,,所以函数在上递增,在上递减,所以,所以.故选B.本题考查了不等式能成立问题,属中档题.10、B【解析】
探寻规律,利用等差数列求和进行判断【详解】由题意得底数是的数分裂成个奇数,底数是的数分裂成个奇数,底数是的数分裂成个奇数,则底数是数分裂成个奇数,则共有个奇数,是从开始的第个奇数,,第个奇数是底数为的数的立方分裂的奇数的其中一个,即,故选本题考查了数字的变化,找出其中的规律,运用等差数列求出奇数的个数,然后进行匹配,最终还是考查了数列的相关知识。11、C【解析】
用微积分基本定理计算.【详解】.故选:C.本题考查微积分基本定理求定积分.解题时可求出原函数,再计算.12、D【解析】由得,由得,故,选D.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.二、填空题:本题共4小题,每小题5分,共20分。13、②④⑤【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假.详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时,则平均减少5个单位;曲线上的点与该点的坐标之间不一定具有相关关系;在一个列联表中,由计算得,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.14、【解析】
利用周期及奇偶性可将f(log23)化为,而,则答案可求.【详解】∵f(x)是定义在(﹣∞,+∞)上周期为2的偶函数,∴f(log23)=f(﹣log23)=f(﹣log23+2),∵,且当x∈[0,1]时,f(x)=2x﹣1,∴.故答案为:.本题考查函数的奇偶性及周期性的应用,考查指数及对数的运算,属于基础题.15、【解析】
根据消参,将化为直角坐标系下曲线方程,即可求轴的交点坐标.【详解】可化为可得:当时,曲线与轴的交点坐标是.故答案为:.本题考查圆锥曲线的参数方程和普通方程的转化,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法.本题采用了三角恒等式消元法.16、60【解析】
先写出二项展开式的通项,,令,进而可求出结果.【详解】因为的二项展开式的通项为:,令,则,所以项的系数为.故答案为:本题主要考查求指定项的系数,熟记二项式定理即可,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3(2)【解析】
(1)在中,中分别使用正弦定理,结合,,即,即得解;(2)在中,中分别使用余弦定理,结合,可解得,分别计算,又可得解.【详解】(1)在中,由正弦定理,得.在中,由正弦定理,得.因为,所以,所以.从而有,即.又,所以.(2)在中,由余弦定理,得.在中,由余弦定理,得.由,得.因为,所以.故有.解得.又,所以,.;.故的面积.本题考查了正弦定理、余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.18、(1),(2)【解析】
(1)由面积公式可得结合可求得解得再由余弦定理求得a=8.最后由正弦定理求sinC的值;(2)直接展开求值.【详解】(1)△ABC中,由得由,得又由解得由,可得a=8.由,得.(2),本题主要考查三角变换及正弦定理、余弦定理等基础知识,考查基本运算求解能力.19、(1)的单调递减区间为;的单调递增区间为;(2);(3)见解析.【解析】【试题分析】(1)直接对函数求导得,借助导函数值的符号与函数单调性之间的关系求出其单调区间;(2)先将不等式中参数分离分离出来可得:,再构造函数,,求导得,借助,推得,从而在上单调递减,,进而求得;(3)先将不等式等价转化为,再构造函数,求导可得,由(2)知时,恒成立,所以,即恒成立,故在上单调递增,所以,因此时,有:解:(1))当时,则,令得,所以有即时,的单调递减区间为;的单调递增区间为.(2)由,分离参数可得:,设,,∴,又∵,∴,则在上单调递减,∴,∴即的取值范围为.(3)证明:等价于设,∴,由(2)知时,恒成立,所以,∴恒成立∴在上单调递增,∴,因此时,有.点睛:解答本题的第一问时,先对函数求导得,借助导函数值的符号与函数单调性之间的关系求出其单调区间;求解第二问时,先将不等式中参数分离出来可得,再构造函数,,求导得,借助,推得,从而在上单调递减,,进而求得;第三问的证明过程中,先将不等式等价转化为,再构造函数,求导可得,由(2)知时,恒成立,所以,即恒成立,故在上单调递增,所以,因此证得当时,不等式成立。20、(1);(2);(3)分布列见解析,.【解析】
(1)分两类计算:一类是恰有两次成功,另一类是三次均成功;(2)乙小组第四次成功前共进行了6次试验,三次成功三次失败,恰有两次连续失败共有种情况;(3)列出随机变量X的所有可能取值,并求得相应的取值的概率即可得到分布列与期望.【详解】(1)记至少两次试验成功为事件A,则,答:甲小组做三次试验,至少两次试验成功的概率为.(2)由题意知,乙小组第四次成功前共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,共有种情况.记乙小组第四次成功前共有三次失败,且恰有两次连续失败为事件B,则,答:乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率为.(3)X的所有可能取值为0,1,2,3,4.,,,,,所以X的概率分布为:X01234P数学期望.本题考查独立重复试验的概率、离散型随机变量的分布列、期望,考查学生的运算求解能力,是一道中档题.21、(1),.(2),该曲线为抛物线(除掉原点).【解析】
(1)由题可知,直线与圆相切,根据圆心到直线的距离等于半径,结合离心率,即可求出与.(2)求出焦点坐标,设点坐标,从而得出的坐标,同时设,利用垂直关系可得出关于的式子即为的轨迹方程.【详解】解:(1),,.(2),两点分别为,,由题意可设那么线段中点为,设是所求轨迹上的任意点由于,即,所以.又因为,消参得轨迹方程为.该曲线为抛物线(除掉原点).本题主要考查椭圆的简单几何性质,包括离心率、短半轴长、焦点坐标,还涉及中点坐标公式,以及两直线垂直时斜率相乘为-1,还利用消参法求动点的轨迹方程.22、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西方国家政策协调的机制分析试题及答案
- 机电工程高新技术考察试题及答案
- 2025年直播电商主播影响力提升与内容营销策略研究报告
- 反映西方社会变迁的重大政治事件试题及答案
- 公共政策在应对自然灾害中的角色研究试题及答案
- 网络设备性能评估试题及答案
- 接受失败并调整学习方法2025年信息系统项目管理师试题及答案
- 西方国家的社会政策与民生福祉试题及答案
- 沟通技巧在公共政策中的应用研究试题及答案
- 机电接口与通讯协议试题及答案
- 某村古建筑保护建设工程项目可行性方案
- 安全生产知识竞赛题库及答案(共200题)
- 2023年中电信数智科技有限公司招聘笔试题库及答案解析
- GB 1886.358-2022食品安全国家标准食品添加剂磷脂
- GB/T 1508-2002锰矿石全铁含量的测定重铬酸钾滴定法和邻菲啰啉分光光度法
- 小学六年级信息技术复习题
- 食品安全培训(食品安全知识)-课件
- 初二物理新人教版《功》公开课一等奖省优质课大赛获奖课件
- 北京大学国际政治经济学教学大纲
- 合肥市建设工程消防设计审查、消防验收、备案与抽查文书样式
- 《电气工程基础》熊信银-张步涵-华中科技大学习题答案全解
评论
0/150
提交评论