




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省文昌华侨中学2025年高二数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将一枚质地均匀且各面分别有狗,猪,羊,马图案的正四面体玩具抛掷两次,设事件{两次掷的玩具底面图案不相同},{两次掷的玩具底面图案至少出现一次小狗},则()A. B. C. D.2.将函数的图象向左平移个单位后得到函数的图象如图所示,则函数的解析式是()A.() B.()C.() D.()3.在市高二下学期期中考试中,理科学生的数学成绩,已知,则从全市理科生中任选一名学生,他的数学成绩小于110分的概率为()A.0.15 B.0.50 C.0.70 D.0.854.已知点P(x,y)的坐标满足条件那么点P到直线3x-4y-13=0的距离的最小值为()A.2 B.1 C. D.5.已知函数在恰有两个零点,则实数的取值范围是()A. B.C. D.6.抛掷一枚均匀的骰子两次,在下列事件中,与事件“第一次得到6点”不互相独立的事件是()A.“两次得到的点数和是12”B.“第二次得到6点”C.“第二次的点数不超过3点”D.“第二次的点数是奇数”7.在同一平面直角坐标系中,曲线按变换后的曲线的焦点坐标为()A. B. C. D.8.复数(为虚数单位)的虚部是().A. B. C. D.9.设随机变量服从正态分布,且,则()A. B. C. D.10.名同学合影,站成了前排人,后排人,现摄影师要从后排人中抽人站前排,其他人的相对顺序不变,则不同的调整方法的种数为()A. B. C. D.11.设命题:,;命题:若,则,则下列命题为真命题的是()A. B. C. D.12.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为,,则满足的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____.14.已知集合则_______.15.已知集合,集合,则_______.16.为了宣传校园文化,让更多的学生感受到校园之美,某校学生会组织了6个小队在校园最具有代表性的3个地点进行视频拍摄,若每个地点至少有1支小队拍摄,则不同的分配方法有_____种(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数z满足|3+4i|+z=1+3i.(1)求;(2)求的值.18.(12分)椭圆长轴右端点为,上顶点为,为椭圆中心,为椭圆的右焦点,且,离心率为.(1)求椭圆的标准方程;(2)直线交椭圆于、两点,判断是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.19.(12分)2019年春节,“抢红包”成为社会热议的话题之一.某机构对春节期间用户利用手机“抢红包”的情况进行调查,如果一天内抢红包的总次数超过10次为“关注点高”,否则为“关注点低”,调查情况如下表所示:关注点高关注点低总计男性用户5女性用户78总计1016(1)把上表补充完整,并判断能否在犯错误的概率不超过0.05的前提下认为性别与关注点高低有关?(2)现要从上述男性用户中随机选出3名参加一项活动,以表示选中的男性用户中抢红包总次数超过10次的人数,求随机变量的分布列及数学期望.下面的临界值表供参考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828独立性检验统计量,其中.20.(12分)已知函数,曲线在点处切线与直线垂直.(1)试比较与的大小,并说明理由;(2)若函数有两个不同的零点,,证明:.21.(12分)随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公司进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:经常进行网络购物偶尔或从不进行网络购物合计男性5050100女性6040100合计11090200(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关?(2)现从所抽取的女性网民中利用分层抽样的方法再抽取人,从这人中随机选出人赠送网络优惠券,求选出的人中至少有两人是经常进行网络购物的概率;(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取人赠送礼物,记经常进行网络购物的人数为,求的期望和方差.附:,其中22.(10分)已知,函数.(1)讨论函数的单调性;(2)若,且在时有极大值点,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
利用条件概率公式得到答案.【详解】故答案选C本题考查了条件概率的计算,意在考查学生的计算能力.2、A【解析】设,由的图像可知,函数的周期为,所以,将代入得,所以,向右平移后得到.3、D【解析】
根据正态密度曲线的对称性得出,于是可计算出,于此可得出结果.【详解】由于,由正态密度曲线的对称性可得,因此,,故选D.本题考查正态分布在指定区间上的概率的计算,解题的关键在于利用正态密度曲线的对称性将所求概率转化为已知区间概率进行计算,属于基础题.4、A【解析】
由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点到直线的最小值,即可求解.【详解】由约束条件作出可行域,如图所示,由图可知,当与重合时,点到直线的距离最小为.故选:A.本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5、B【解析】
本题可转化为函数与的图象在上有两个交点,然后对求导并判断单调性,可确定的图象特征,即可求出实数的取值范围.【详解】由题意,可知在恰有两个解,即函数与的图象在上有两个交点,令,则,当可得,故时,;时,.即在上单调递减,在上单调递增,,,,因为,所以当时,函数与的图象在上有两个交点,即时,函数在恰有两个零点.故选B.已知函数有零点(方程有根)求参数值常用的方法:(1)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(2)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解.6、A【解析】
利用独立事件的概念即可判断.【详解】“第二次得到6点”,“第二次的点数不超过3点”,“第二次的点数是奇数”与事件“第一次得到6点”均相互独立,而对于“两次得到的点数和是12”则第一次一定是6点,第二次也是6点,故不是相互独立,故选D.本题考查了相互独立事件,关键是掌握其概念,属于基础题.7、D【解析】
把伸缩变换的式子变为用表示,再代入原方程即可求出结果.【详解】由可得,将其代入可得:,即故其焦点为:.故选:D.本题考查的是有关伸缩变换后曲线方程的求解问题,涉及到的知识点有伸缩变换规律对应点的坐标之间的关系,属于基础题8、A【解析】
利用复数的除法法则将复数表示为一般形式,可得出复数的虚部.【详解】,因此,该复数的虚部为,故选A.本题考查复数的除法,考查复数的虚部,对于复数问题的求解,一般利用复数的四则运算法则将复数表示为一般形式,明确复数的实部与虚部进行求解,考查计算能力,属于基础题.9、B【解析】
根据正态密度曲线的对称性得出,再由可计算出答案.【详解】由于随机变量服从正态分布,由正态密度曲线的对称性可知,因此,,故选B.本题考查正态分布概率的计算,充分利用正态密度曲线的对称性是解题的关键,考查计算能力,属于基础题.10、C【解析】分析:首先从后排的7人中选出2人,有C72种结果,再把两个人在5个位置中选2个位置进行排列有A52,利用乘法原理可得结论.详解:由题意知本题是一个分步计数问题,首先从后排的7人中选出2人,有C72种结果,再把两个人在5个位置中选2个位置进行排列有A52,∴不同的调整方法有C72A52,故选:C点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手;(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.11、D【解析】分析:先判断命题的真假,进而根据复合命题真假的真值表,可得结论.详解:因为成立,所以,不存在,,故命题为假命题,为真命题;当时,成立,但不成立,故命题为假命题,为真命题;故命题均为假命题,命题为真命题,故选D.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查不等式的性质以及特称命题的定义,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.12、B【解析】
先化简,得到或.利用列举法和古典概型概率计算公式可计算出所求的概率.【详解】由,有,得或,则满足条件的为,,,,,,,,,所求概率为.故选B.本小题主要考查对数运算,考查列举法求得古典概型概率有关问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、4038.【解析】
由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解.【详解】由知:得函数的图象关于点对称又函数的图象关于点对称则函数图象与函数图象的交点关于点对称则故,即本题正确结果:本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题.14、【解析】
先求出集合A,再求得解.【详解】由题得所以.故答案为本题主要考查集合的补集运算,意在考查学生对该知识的理解掌握水平,属于基础题.15、{3,4}.【解析】
利用交集的概念及运算可得结果.【详解】,.本题考查集合的运算,考查交集的概念与运算,属于基础题.16、540【解析】
首先将6个小队分成三组,有三种组合,然后再分配,即可求出结果.【详解】(1)若按照进行分配有种方案;(2)若按照进行分配有种方案;(3)若按照进行分配有种方案;由分类加法原理,所以共有种分配方案.本题主要考查分类加法计数原理,以及排列组合的相关知识应用.易错点是平均分配有重复,注意消除重复.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)2【解析】
(1)先求出为,即可求出,再根据共轭复数的定义即可求出;(2)根据复数的运算法则计算即可得出结论.【详解】(1)因为|3+4i|=5,所以z=1+3i-5=-4+3i,所以=-4-3i.(2)===2.复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.18、(1);(2)存在直线:满足要求.【解析】
(1)由条件布列关于a,b的方程组,即可得到椭圆的标准方程;(2)由为的垂心可知,利用韦达定理表示此条件即可得到结果.【详解】解:(1)设椭圆的方程为,半焦距为.则、、、、由,即,又,解得,椭圆的方程为(2)为的垂心,又,,设直线:,,将直线方程代入,得,,且又,,,即由韦达定理得:解之得:或(舍去)存在直线:使为的垂心.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、三角形垂心的性质、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.19、(1)见解析,在犯错误的概率不超过0.05的前提下认为性别与关注点高低有关.(2)见解析,【解析】
(1)先补充列联表,再根据公式求出的观测值并与1.841比较大小,从而得出结论;(2)随机变量的所有可能取值为0,1,2,1,结合组合数求出相应概率,由此可得分布列与期望.【详解】解:(1)根据题意得列联表如下:关注点高关注点低总计男性用户158女性用户718总计10616的观测值为,所以,在犯错误的概率不超过0.05的前提下认为性别与关注点高低有关;(2)随机变量的所有可能取值为0,1,2,1.,,,.得的分布列为0121.本题主要考查独立性检验的应用,考查离散型随机变量的分布列与期望,考查计算能力,属于中档题.20、(1),理由见解析(2)详见解析【解析】
(1)求出的导数,由两直线垂直的条件,即可得切线的斜率和切点坐标,进而可知的解析式和导数,求解单调区间,可得,即可得到与的大小;(2)运用分析法证明,不妨设,由根的定义化简可得,,要证:只需要证:,求出,即证,令,即证,令,求出导数,判断单调性,即可得证.【详解】(1)函数,,所以,又由切线与直线垂直,可得,即,解得,此时,令,即,解得,令,即,解得,即有在上单调递增,在单调递减所以即(2)不妨设,由条件:,要证:只需要证:,也即为,由只需要证:,设即证:,设,则在上是增函数,故,即得证,所以.本题主要考查了导数的运用,求切线的斜率和单调区间,构造函数,运用单调性解题是解题的关键,考查了化简运算整理的能力,属于难题.21、(1)不能(2)(3)【解析】试题分析:(1)由列联表中的数据计算的观测值,对照临界值得出结论;(2)利用分层抽样原理求出所抽取的5名女网民中经常进行网购和偶尔或不进行网购的人数,计算所求的概率值;(3)由列联表中数据计算经常进行网购的频
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业合作开发基地协议书
- 农业遥感技术应用与数据共享服务协议
- 商业物业清洁服务合作协议
- 企业食堂食材采购供应协议
- 写字楼物业服务合同修订版
- 房地产租赁管理平台建设合作协议
- 摄影合作协议范本下载
- 2025年医卫类医院三基考试医师-医技参考题库含答案解析(5卷)
- 哈尔滨个人租房协议书3篇
- 技术咨询合同格式范本2篇
- 暂住人员管理办法
- 护理查对不良事件案例分析
- 化验室精细化管理
- 洗衣服劳动与技术课件
- 无人机地形测量方案
- 2024年呼伦贝尔农垦集团有限公司招聘笔试真题
- 安防报警信息系统项目投资可行性研究分析报告(2024-2030版)
- 人教版三年级上数学第二单元《含括号的混合运算》课时练习卷(含答案)
- 湖南美术出版社二年级美术上册学期教学计划
- 医疗器械培训计划和记录
- 2025年上海市中考语文试题含解析
评论
0/150
提交评论