版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省康县第一中学2024-2025学年数学高二第二学期期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线是曲线的切线,则()A. B.1 C.2 D.2.如图,在正方体的八个顶点中任取两个点作直线,与直线异面且夹角成的直线的条数为().A. B. C. D.3.函数的部分图象大致为()A. B.C. D.4.若,则()A.2 B.4 C. D.85.若,且m,n,,则()A. B. C. D.6.已知随机变量服从二项分布,则().A. B. C. D.7.若样本数据的均值与方差分别为和,则数据的均值与方差分别为()A., B. C. D.8.已知离散型随机变量服从二项分布,且,则()A. B. C. D.9.函数的图象如图所示,下列数值排序正确的是()A.B.C.D.10.某中学高二共有12个年级,考试时安排12个班主任监考,每班1人,要求有且只有8个班级是自己的班主任监考,则不同的安排方案有()A.4455 B.495 C.4950 D.742511.已知m∈R,若函数f(x)=1x+1-mx-m-3(-1<x⩽0)A.-94,-2 B.(-912.定义在上的函数,当时,,则函数()的所有零点之和等于()A.2 B.4 C.6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.函数的单调递增区间为__________.14.已知函数,则关于x的不等式的解集是_______.15.已知a=log0.35, b=2316.双曲线的焦点是,若双曲线上存在点,使是有一个内角为的等腰三角形,则的离心率是______;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)对一批产品的内径进行抽查,已知被抽查的产品的数量为200,所得内径大小统计如表所示:(Ⅰ)以频率估计概率,若从所有的这批产品中随机抽取3个,记内径在的产品个数为X,X的分布列及数学期望;(Ⅱ)已知被抽查的产品是由甲、乙两类机器生产,根据如下表所示的相关统计数据,是否有的把握认为生产产品的机器种类与产品的内径大小具有相关性.参考公式:,(其中为样本容量).0.0500.0100.001k3.8416.63510.82818.(12分)已知抛物线C:=2px(p>0)的准线方程为x=-,F为抛物线的焦点(I)求抛物线C的方程;(II)若P是抛物线C上一点,点A的坐标为(,2),求的最小值;(III)若过点F且斜率为1的直线与抛物线C交于M,N两点,求线段MN的中点坐标.19.(12分)为了巩固全国文明城市创建成果,今年吉安市开展了拆除违章搭建铁皮棚专项整治行为.为了了解市民对此项工作的“支持”与“反对”态度,随机从存在违章搭建的户主中抽取了男性、女性共名进行调查,调查结果如下:支持反对合计男性女性合计(1)根据以上数据,判断是否有的把握认为对此项工作的“支持”与“反对”态度与“性别”有关;(2)现从参与调查的女户主中按此项工作的“支持”与“反对”态度用分层抽样的方法抽取人,从抽取的人中再随机地抽取人赠送小礼品,记这人中持“支持”态度的有人,求的分布列与数学期望.参考公式:,其中.参考数据:20.(12分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.21.(12分)(1)已知,是虚数单位,若,是纯虚数,写出一个以为其中一根的实系数一元二次方程;(2)求纯虛数的平方根.22.(10分)如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,∠BCD=110°,PA⊥底面ABCD,PA=4,AB=1.(I)求证:平面PBD⊥平面PAC;(Ⅱ)过AC的平面交PD于点M若平面AMC把四面体P﹣ACD分成体积相等的两部分,求二面角A﹣MC﹣P的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
设切点坐标,求导数,写出切线斜率,由切线过点,求出切点坐标,得切线斜率.【详解】直线过定点,设,切点为,,,∴切线方程为,又切点过点,∴,解得.∴.故选:C.本题考查导数的几何意义,在未知切点时,一般先设切点坐标,由导数得出切线方程,再结合已知条件求出切点坐标,得切线方程.2、B【解析】
结合图形,利用异面直线所成的角的概念,把与A1B成60°角的异面直线一一列出,即得答案.【详解】在正方体ABCD﹣A1B1C1D1的八个顶点中任取两个点作直线,与直线A1B异面且夹角成60°的直线有:AD1,AC,D1B1,B1C,共4条.故选B.本题考查异面直线的定义及判断方法,异面直线成的角的定义,体现了数形结合的数学思想,是基础题.3、A【解析】
判断函数的奇偶性,排除B,确定时函数值的正负,排除C,再由时函数值的变化趋势排除D.从而得正确结论.【详解】因为是偶函数,排除B,当时,,,排除C,当时,排除D.故选:A.本题考查由解析式选图象,可能通过研究函数的性质,如奇偶性、单调性、对称性等排除一些选项,通过特殊的函数值、特殊点如与坐标轴的交点,函数值的正负等排除一些,再可通过函数值的变化趋势又排除一些,最多排除三次,剩下的最后一个选项就是正确选项.4、D【解析】
通过导数的定义,即得答案.【详解】根据题意得,,故答案为D.本题主要考查导数的定义,难度不大.5、D【解析】
根据已知条件,运用组合数的阶乘可得:,再由二项式系数的性质,可得所要求的和.【详解】则故选:D本题考查了组合数的计算以及二项式系数的性质,属于一般题.6、D【解析】表示做了次独立实验,每次试验成功概率为,则.选.7、D【解析】
直接根据均值和方差的定义求解即可.【详解】解:由题意有,,则,∴新数据的方差是,故选:D.本题主要考查均值和方差的求法,属于基础题.8、D【解析】
利用二项分布期望公式求出,再由方差公式可计算出答案。【详解】由于离散型随机变量服从二项分布,则,所以,,因此,,故选:D。本题考查二项分布期望与方差公式的应用,灵活运用二项分布的期望和方差公式是解本题的关键,意在考查学生对这些知识的理解和掌握情况,属于中等题。9、B【解析】
根据已知条件可以把转化为即为函数在为和对应两点连线的斜率,且,是分别为时对应图像上点的切线斜率,再结合图像即可得到答案.【详解】,是分别为时对应图像上点的切线斜率,,为图像上为和对应两点连线的斜率,(如图)由图可知,故选:B本题考查了导数的几何意义以及斜率公式,比较斜率大小,属于较易题.10、A【解析】
根据题意,分两步进行:先确定8个是自己的班主任老师监考的班级,然后分析剩余的4个班级的监考方案,计算可得其情况数目,由分步计数原理计算可得答案.【详解】某中学高二共有12个年级,考试时安排12个班主任监考,每班1人,要求有且只有8个班级是自己的班主任监考,首先确定8个是自己的班主任老师监考的班级,有种,而剩余的4个班级全部不能有本班的班主任监考,有种;由分步计数原理可得,共种不同的方案;故选:A.本题解题关键是掌握分步计数原理和组合数计算公式,考查了分析能力和计算能力,属于中档题.11、B【解析】
通过参变分离、换元法,把函数f(x)的零点个数转化成直线y=m与抛物线的交点个数.【详解】∵-1<x≤0,∴0<x+1≤1,∵函数f(x)在-1<x≤0有两个不同零点⇔方程m=(1x+1)2∴m=t2-3t在t≥1有且仅有两个不同的根⇔y=m∴-通过换元把复杂的分式函数转化为熟知的二次函数,但要注意换元后新元的取值范围.12、D【解析】分析:首先根据得到函数关于对称,再根据对称性画出函数在区间上的图像,再根据函数与函数图像的交点来求得函数的零点的和.详解:因为故函数关于对称,令,即,画出函数与函数图像如下图所示,由于可知,两个函数图像都关于对称,两个函数图像一共有个交点,对称的两个交点的横坐标的和为,故函数的个零点的和为.故选D.点睛:本小题主要考查函数的对称性,考查函数的零点的转化方法,考查数形结合的数学思想方法.解决函数的零点问题有两个方法,一个是利用零点的存在性定理,即二分法来解决,这种方法用在判断零点所在的区间很方便.二个是令函数等于零,变为两个函数,利用两个函数图像的交点来得到函数的零点.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求得函数的定义域,然后根据复合函数同增异减求得函数的单调递增区间.【详解】由解得或,由于在其定义域上递减,而在时递减,故的单调递增区间为.本小题主要考查复合函数单调区间的求法,考查对数函数定义域的求法,属于基础题.14、【解析】
求出是奇函数,且在定义域上是单减函数,变形再利用单调性解不等式可得解.【详解】,是奇函数,又是上的减函数,是上的增函数,由函数单调性质得是上的减函数.,则,由奇函数得且是上的减函数.,,又不等式的解集是故答案为:本题考查利用函数奇偶性和单调性解指对数方程或不等式.有关指对数方程或不等式的求解思路:利用指对数函数的单调性,要特别注意底数的取值范围,并在必要时进行分类讨论.15、a<c<b【解析】
将a,b,c分别判断与0,1的大小关系得到答案.【详解】a=b=0<c=故答案为a<c<b本题考查了数值的大小比较,0,1分界是一个常用的方法.16、【解析】
根据双曲线的对称性可知,等腰三角形的腰应该为与或与,不妨设等腰三角形的腰为与,故可得到的值,再根据等腰三角形的内角为,求出的值,利用双曲线的定义可得双曲线的离心率.【详解】解:根据双曲线的对称性可知,等腰三角形的两个腰应为与或与,不妨设等腰三角形的腰为与,且点在第一象限,故,等腰有一内角为,即,由余弦定理可得,,由双曲线的定义可得,,即,解得:.本题考查了双曲线的定义、性质等知识,解题的关键是要能准确判断出等腰三角形的腰所在的位置.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)分布列见解析,;(Ⅱ)没有.【解析】
(Ⅰ)由频率分布表可知,任取1件产品,内径在[26,28)的概率,所以,根据二项分布的计算公式分别求出时的概率,列出分布列,再根据期望公式求出期望;(Ⅱ)首先依题意填写列联表,再求得的观测值,结合临界值表即可得出结论。【详解】(I)任取1件产品,内径在[26,28)的概率,故,,=,=,=,故X的分布列为:X0123P故;(II)依题意,所得列联表如下所示内径小于28mm内径不小于28mm总计甲机器生产6832100乙机器生产6040100总计12872200的观测值为,故没有99%的把握认为生产产品的机器种类与产品的内径大小具有相关性。本题主要考查离散型随机变量的分布列与期望的求法,独立性检验的基本思想及其应用。18、(Ⅰ)(II)4(III)线段MN中点的坐标为()【解析】
(I)由准线方程求得,可得抛物线标准方程.(II)把转化为到准线的距离,可得三点共线时得所求最小值.(III)写出直线方程,代入抛物线方程后用韦达定理可得中点坐标.【详解】(I)∵准线方程x=-,得=1,∴抛物线C的方程为(II)过点P作准线的垂线,垂直为B,则=要使+的最小,则P,A,B三点共线此时+=+=4·(III)直线MN的方程为y=x-·设M(),N(),把y=x-代入抛物线方程,得-3x+=0∵△=9-4×1×=8>0∴+=3,=线段MN中点的横坐标为,纵坐标为线段MN中点的坐标为()本题考查抛物线的标准方程与几何性质.解题时注意抛物线上的点到焦点的距离常常转化为这点到准线的距离.19、(1)没有的把握认为对此项工作的“支持”与“反对”态度与性别有关;(2)分布列见解析,期望为.【解析】分析:(1)根据公式计算的观测值k,再根据表格即可得出结论;(2)的所有可能取值为,,,分别求出相对应的概率即可.详解:(1),∴没有的把握认为对此项工作的“支持”与“反对”态度与性别有关.(2)依题意可知,抽取的名女户主中,持“支持”态度的有人,持反对态度的有人,的所有可能取值为,,,,,,∴的分布列为:∴.点睛:解决独立性检验应用问题的方法解决一般的独立性检验问题,首先由所给2×2列联表确定a,b,c,d,n的值,然后根据统计量K2的计算公式确定K2的值,最后根据所求值确定有多大的把握判定两个变量有关联.20、(1);(2)680元.【解析】
(1)根据题意,列方程,然后求解即可(2)根据题意,计算出10000元使用“余额宝”的利息为(元)和10000元使用“财富通”的利息为(元),得到所有可能的取值为560(元),700(元),840(元),然后根据所有可能的取值,计算出相应的概率,并列出的分布列表,然后求解数学期望即可【详解】(1)据题意,得,所以.(2)据,得这被抽取的7人中使用“余额宝”的有4人,使用“财富通”的有3人.10000元使用“余额宝”的利息为(元).10000元使用“财富通”的利息为(元).所有可能的取值为560(元),700(元),840(元).,,.的分布列为560700840所以(元).本题考查频数分布表以及分布列和数学期望问题,属于基础题21、(1)(2)或【解析】
(1)先求出的值,再写出一个以为其中一根的实系数一元二次方程;(2)设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年社会责任与品牌形象试题含答案
- 食品追溯系统解决方案
- 2025年银行柜面业务处理与风险防范指南
- 2026年剧本杀运营公司门店扩张与筹备管理制度
- 2025秋期版国开电大行管专科《政治学原理》期末纸质考试总题库珍藏版
- 2026年教育科技行业创新模式报告及人才培养报告
- 广东省东莞市常香江中龙五校2024-2025学年八年级上学期期末生物试题(含答案)
- 2025年城市轨道交通智能化运维系统开发与智能优化可行性报告
- 2025年光伏支架安装智能化发展五年报告
- 护理查房软件应用
- 食堂档案建立方案(3篇)
- 智慧指挥调度中心建设方案
- DB37∕T 4126-2020 渔船安全操作规范
- 造林技术规程样本
- 非静脉曲张上消化道出血的内镜管理指南解读课件
- 2025年国防科工局机关公开遴选公务员笔试模拟题及答案
- 2024-2025学年山东省济南市天桥区八年级(上)期末语文试卷(含答案解析)
- (高清版)DB44∕T 724-2010 《广州市房屋安全鉴定操作技术规程》
- 2025职业健康培训测试题(+答案)
- 《实践论》《矛盾论》导读课件
- 老年病康复训练治疗讲课件
评论
0/150
提交评论