广西贺州中学2025年数学高二下期末预测试题含解析_第1页
广西贺州中学2025年数学高二下期末预测试题含解析_第2页
广西贺州中学2025年数学高二下期末预测试题含解析_第3页
广西贺州中学2025年数学高二下期末预测试题含解析_第4页
广西贺州中学2025年数学高二下期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西贺州中学2025年数学高二下期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的离心率为,焦点是,,则双曲线方程为()A. B.C. D.2.已知定义在上的函数与函数有相同的奇偶性和单调性,则不等式的解集为()A. B. C. D.3.已知等差数列{an}的前n项和为Sn,若a5+a7+a9=21,则S13=()A.36 B.72 C.91 D.1824.下列说法正确的是()A.命题“”的否定是“”B.命题“已知,若则或”是真命题C.命题“若则函数只有一个零点”的逆命题为真命题D.“在上恒成立”在上恒成立5.已知是定义在上的偶函数,且当时,都有成立,设,,,则,,的大小关系为()A. B. C. D.6.设实数a=log23,b=A.a>b>c B.a>c>b C.b>a>c D.b>c>a7.如图,阴影部分的面积是()A. B. C. D.8.已知函数是奇函数,则曲线在点处的切线方程是()A. B. C. D.9.焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或 B.C.或 D.10.如图是求样本数据方差的程序框图,则图中空白框应填入的内容为()A. B.C. D.11.设,“”,“”,则是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件12.设,则是的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.设集合,,则____________.14.若,分别是椭圆:短轴上的两个顶点,点是椭圆上异于,的任意一点,若直线与直线的斜率之积为,则__________.15.设,若不等式对任意实数恒成立,则取值集合是_______.16.在如图所示的十一面体中,用种不同颜色给这个几何体各个顶点染色,每个顶点染一种颜色,要求每条棱的两端点异色,则不同的染色方案种数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数当时,求函数的极值;求函数的单调递增区间;当时,恒成立,求实数a的取值范围.18.(12分)某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为,且各个水果是否为不合格品相互独立.(Ⅰ)记10个水果中恰有2个不合格品的概率为,求取最大值时p的值;(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的作为p的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a元的赔偿费用.(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?19.(12分)(理科学生做)某一智力游戏玩一次所得的积分是一个随机变量,其概率分布如下表,数学期望.(1)求a和b的值;(2)某同学连续玩三次该智力游戏,记积分X大于0的次数为Y,求Y的概率分布与数学期望.X036Pab20.(12分)某鲜花批发店每天早晨以每支2元的价格从鲜切花生产基地购入某种玫瑰,经过保鲜加工后全部装箱(每箱500支,平均每支玫瑰的保鲜加工成本为1元),然后以每箱2000元的价格整箱出售.由于鲜花的保鲜特点,制定了如下促销策略:若每天下午3点以前所购进的玫瑰没有售完,则对未售出的玫瑰以每箱1200元的价格降价处理.根据经验,降价后能够把剩余玫瑰全部处理完毕,且当天不再购进该种玫瑰.因库房限制每天最多加工6箱.(1)若某天此鲜花批发店购入并加工了6箱该种玫瑰,在下午3点以前售出4箱,且6箱该种玫瑰被6位不同的顾客购买.现从这6位顾客中随机选取2人赠送优惠卡,求恰好一位是以2000元价格购买的顾客且另一位是以1200元价格购买的顾客的概率:(2)此鲜花批发店统计了100天该种玫瑰在每天下午3点以前的销售量t(单位:箱),统计结果如下表所示(视频率为概率):t/箱456频数30xs①估计接下来的一个月(30天)该种玫瑰每天下午3点前的销售量不少于5箱的天数并说明理由;②记,,若此批发店每天购进的该种玫瑰箱数为5箱时所获得的平均利润最大,求实数b的最小值(不考虑其他成本,为的整数部分,例如:,).21.(12分)三棱柱中,分别是、上的点,且,.设,,.(Ⅰ)试用表示向量;(Ⅱ)若,,,求MN的长..22.(10分)已知点在圆柱的底面圆上,为圆的直径.(1)求证:;(2)若圆柱的体积为,,,求异面直线与所成的角(用反三角函数值表示结果).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意e=2,c=4,由e=,可解得a=2,又b2=c2﹣a2,解得b2=12所以双曲线的方程为.故答案为.故答案选A.2、D【解析】

先判断的奇偶性及单调性,即可由为奇函数性质及单调性解不等式,结合定义域即可求解.【详解】函数,定义域为;则,即为奇函数,,函数在内单调递减,由复合函数的单调性可知在内单调递减,由题意可得函数为在内单调递减的奇函数,所以不等式变形可得,即,则,解不等式组可得,即,故选:D.本题考查了函数奇偶性及单调性的判断,对数型复合函数单调性性质应用,由奇偶性及单调性解抽象不等式,注意定义域的要求,属于中档题.3、C【解析】

根据等差数列的性质求出,根据等差数列的前项和公式可得.【详解】因为{an}为等差数列,所以,所以,所以.故选C.本题考查了等差数列的性质、等差数列的前项和.属于基础题.4、B【解析】

A.注意修改量词并否定结论,由此判断真假;B.写出逆否命题并判断真假,根据互为逆否命题同真假进行判断;C.写出逆命题,并分析真假,由此进行判断;D.根据对恒成立问题的理解,由此判断真假.【详解】A.“”的否定为“”,故错误;B.原命题的逆否命题为“若且,则”,是真命题,所以原命题是真命题,故正确;C.原命题的逆命题为“若函数只有一个零点,则”,因为时,,此时也仅有一个零点,所以逆命题是假命题,故错误;D.“在上恒成立”“在上恒成立”,故错误.故选:B.本题考查命题真假的判断,涉及到函数零点、含一个量词的命题的真假判断、不等式恒成立问题的理解等内容,难度一般.注意互为逆否命题的两个命题真假性相同.5、B【解析】

通过可判断函数在上为增函数,再利用增函数的性质即可得到,,的大小关系.【详解】由于当时,都有成立,故在上为增函数,,,而,所以,故答案为B.本题主要考查函数的性质,利用函数性质判断函数值大小,意在考查学生的转化能力,分析能力和计算能力,难度中等.6、A【解析】分析:利用指数函数、对数函数的单调性及中间量比较大小.详解:∵a=log23>log22=1,0<b=1312<(1c=log132∴a>b>c.故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.7、C【解析】

运用定积分的性质可以求出阴影部分的面积.【详解】设阴影部分的面积为,则.选C考查了定积分在几何学上的应用,考查了数学运算能力.8、B【解析】

根据奇函数的定义或性质求出,然后可求出导函数,得切线斜率,从而得切线方程【详解】∵是奇函数,∴,∴,,是奇函数,,,,切线方程为,即.故选B.本题考查导数的几何意义,考查函数的奇偶性,本题难度一般.9、A【解析】过作与准线垂直,垂足为,则,则当取得最大值时,必须取得最大值,此时直线与抛物线相切,可设切线方程为与联立,消去得,所以,得.则直线方程为或.故本题答案选.点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离,抛物线上的点到准线的距离)进行等量转化,如果问题中涉及抛物线上的点到焦点或到准线的距离,那么用抛物线定义就能解决问题.本题就是将到焦点的距离转化成到准线的距离,将比值问题转化成切线问题求解.10、D【解析】

由题意知该程序的作用是求样本的方差,由方差公式可得.【详解】由题意知该程序的作用是求样本的方差,所用方法是求得每个数与的差的平方,再求这8个数的平均值,则图中空白框应填入的内容为:故选:D本题考查了程序框图功能的理解以及样本方差的计算公式,属于一般题.11、C【解析】

利用不等式的性质和充分必要条件的定义进行判断即可得到答案.【详解】充分性:.所以即:,充分性满足.必要性:因为,所以,.又因为,所以,即.当时,,不等式不成立.当时,,,不等式不成立当时,,,不等式成立.必要性满足.综上:是的充要条件.故选:C本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.12、A【解析】

通过分类讨论可证得充分条件成立,通过反例可知必要条件不成立,从而得到结果.【详解】若,则;若,则;若,则,可知充分条件成立;当,时,则,此时,可知必要条件不成立;是的充分不必要条件本题正确选项:本题考查充分条件与必要条件的判定,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、{2,4,6,8}【解析】分析:详解:因为,,表示A集合和B集合“加”起来的元素,重复的元素只写一个,所以点睛:在求集合并集时要注意集合的互异性.14、2【解析】

设点坐标为,则.由题意得,解得.答案:2点睛:求椭圆离心率或其范围的方法(1)根据题意求出的值,再由离心率的定义直接求解.(2)由题意列出含有的方程(或不等式),借助于消去b,然后转化成关于e的方程(或不等式)求解.解题时要注意椭圆本身所含的一些范围的应用,如椭圆上的点的横坐标等.15、【解析】

将不等式转化为,分别在、、、的情况下讨论得到的最大值,从而可得;分别在、、的情况去绝对值得到不等式,解不等式求得结果.【详解】对任意实数恒成立等价于:①当时,②当时,③当时,④当时,综上可知:,即当时,,解得:当时,,无解当时,,解得:的取值集合为:本题正确结果;本题考查绝对值不等式中的恒成立问题,关键是能够通过分类讨论的思想求得最值,从而将问题转化为绝对值不等式的求解,再利用分类讨论的思想解绝对值不等式即可得到结果.16、6【解析】分析:首先分析几何体的空间结构,然后结合排列组合计算公式整理计算即可求得最终结果.详解:空间几何体由11个顶点确定,首先考虑一种涂色方法:假设A点涂色为颜色CA,B点涂色为颜色CB,C点涂色为颜色CC,由AC的颜色可知D需要涂颜色CB,由AB的颜色可知E需要涂颜色CC,由BC的颜色可知F需要涂颜色CA,由DE的颜色可知G需要涂颜色CA,由DF的颜色可知I需要涂颜色CC,由GI的颜色可知H需要涂颜色CB,据此可知,当△ABC三个顶点的颜色确定之后,其余点的颜色均为确定的,用三种颜色给△ABC的三个顶点涂色的方法有种,故给题中的几何体染色的不同的染色方案种数为6.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的极小值是,无极大值;(2)答案不唯一,具体见解析;(3).【解析】

代入a值,求函数的导数,解导数不等式得到函数的单调区间,即可求极值;求函数的导数,通过讨论a的范围,解导数不等式得函数的递增区间;问题转化为,令,根据函数的单调性求最大值,从而求a的范围.【详解】解:时,,,令,解得:或,令,解得:,故在递增,在递减,在递增,而在处无定义,故的极小值是,无极大值;,当时,解得:或,故函数在,递增,当时,解得:,故函数在递增;,,令,则,,令,解得:,在递增,在递减,即,故.本题考查函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,综合性较强.18、(Ⅰ)0.2(Ⅱ)(ⅰ)(ⅱ)8【解析】

(Ⅰ)记10个水果中恰有2个不合格品的概率为,求得,利用导数即可求解函数的单调性,进而求得函数的最值.(Ⅱ)由(Ⅰ)知,(ⅰ)中,依题意知,,进而利用公式,即可求解;(ⅱ)如果对余下的水果作检验,得这一箱水果所需要的检验费为120元,列出相应的不等式,判定即可得到结论.【详解】(Ⅰ)记10个水果中恰有2个不合格品的概率为f(p),则,∴,由,得.且当时,;当时,.∴的最大值点.(Ⅱ)由(Ⅰ)知,(ⅰ)令Y表示余下的70个水果中的不合格数,依题意知,∴.(ⅱ)如果对余下的水果作检验,则这一箱水果所需要的检验费为120元,由,得,且,∴当种植基地要对每个不合格水果支付的赔偿费用至少为8元时,将促使种植基地对这箱余下的所有水果作检测.本题主要考查了独立重复试验的概率的应用,以及二项分布的应用,其中解答中认真审题,分析试验过程,根据对立重复试验求得事件的概率,以及正确利用分布列的性质求解上解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.19、(1).(2)分布列见解析,.【解析】分析:(1)根据分布列的性可知所有的概率之和为1然后再根据期望的公式得到第二个方程联立求解即可;(2)根据二项分布求解即可.详解:(1)因为,所以,即.①又,得.②联立①,②解得,.(2),依题意知,故,,,.故的概率分布为的数学期望为.点睛:考查分布列的性质,二项分布,认真审题,仔细计算是解题关键,属于基础题.20、(1);(2)①;②【解析】

(1)根据古典概型概率公式计算可得;(2)①用100−30可得;②用购进5箱的平均利润>购进6箱的平均利润,解不等式可得.【详解】解:(1)设这6位顾客是A,B,C,D,E,F.其中3点以前购买的顾客是A,B,C,D.3点以后购买的顾客是E,F.从这6为顾客中任选2位有15种选法:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),其中恰好一位是以2000元价格购买的顾客,另一位是以1200元价格购买的顾客的有8种:(A,E),(A,F),(B,E),(B,F),(C,E),(C,F),(D,E),(D,F).根据古典概型的概率公式得;(2)①

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论