河南省通许县丽星高级中学2025年高二数学第二学期期末经典试题含解析_第1页
河南省通许县丽星高级中学2025年高二数学第二学期期末经典试题含解析_第2页
河南省通许县丽星高级中学2025年高二数学第二学期期末经典试题含解析_第3页
河南省通许县丽星高级中学2025年高二数学第二学期期末经典试题含解析_第4页
河南省通许县丽星高级中学2025年高二数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省通许县丽星高级中学2025年高二数学第二学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.2.已知直线与圆交于两点,且(其中为坐标原点),则实数的值为A. B. C.或 D.或3.若△ABC的内角A,B,C的对边分别为a,b,c,且,△ABC的面,则a=()A.1 B. C. D.4.若函数为偶函数,则()A.-1 B.1 C.-1或1 D.05.已知函数在定义域上有两个极值点,则实数的取值范围是()A. B. C. D.6.在二项式的展开式中,各项系数之和为,二项式系数之和为,若,则()A. B. C. D.7.已知二次函数在区间内有两个零点,则的取值范围为()A. B. C. D.8.(2017新课标全国I理科)记为等差数列的前项和.若,,则的公差为A.1 B.2C.4 D.89.椭圆的点到直线的距离的最小值为()A. B. C. D.010.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则11.已知是虚数单位,,则计算的结果是()A. B. C. D.12.已知,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数在其极值点处的切线方程为____________.14.在北纬圈上有甲、乙两地,若它们在纬度圈上的弧长等于(为地球半径),则这两地间的球面距离为_______.15.已知向量,其中,若与共线,则的最小值为__________.16.已知随机变量服从正态分布,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,若直线的极坐标方程为,曲线的参数方程是(为参数).(1)求直线的直角坐标方程和曲线的普通方程;(2)设点的直角坐标为,过的直线与直线平行,且与曲线交于、两点,若,求的值.18.(12分)已知正项数列满足:,,.(Ⅰ)求;(Ⅱ)证明:;(Ⅲ)设为数列的前项和,证明:.19.(12分)已知函数(Ⅰ)若,求实数的取值范围;(Ⅱ)若,判断与的大小关系并证明.20.(12分)已知曲线C的参数方程为(a参数),以直角坐标系的原点为极点,x正半轴为极轴建立极坐标系.(Ⅰ)求曲线C的极坐标方程;(Ⅱ)若直线l极坐标方程为,求曲线C上的点到直线l最大距离.21.(12分)在的展开式中,求:(1)第3项的二项式系数及系数;(2)含的项.22.(10分)为了研究家用轿车在高速公路上的速情况,交通部门对名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在名男性驾驶员中,平均车速超过的有人,不超过的有人.在名女性驾驶员中,平均车速超过的有人,不超过的有人.(1)完成下面的列联表,并判断是否有的把握认为平均车速超过与性别有关,(结果保留小数点后三位)平均车速超过人数平均车速不超过人数合计男性驾驶员人数女性驾驶员人数合计(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取辆,若每次抽取的结果是相互独立的,问这辆车中平均有多少辆车中驾驶员为男性且车速超过?附:(其中为样本容量)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心.,又点在圆上,,即.,故选A.本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.2、C【解析】分析:利用OA⊥OB,OA=OB,可得出三角形AOB为等腰直角三角形,由圆的标准方程得到圆心坐标与半径R,可得出AB,求出AB的长,圆心到直线y=﹣x+a的距离为AB的一半,利用点到直线的距离公式列出关于a的方程,求出方程的解即可得到实数a的值.详解:∵OA⊥OB,OA=OB,∴△AOB为等腰直角三角形,又圆心坐标为(0,0),半径R=1,∴AB=.∴圆心到直线y=﹣x+a的距离d=AB==,∴|a|=1,∴a=±1.故答案为C.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理和垂径定理.3、A【解析】

根据三角形面积公式可得,利用正余弦平方关系,即可求得正余弦值,由余弦定理可得.【详解】因为,,面积,所以.所以.所以,.所以.故选A.本题考查正余弦定理,面积公式,基础题.4、C【解析】

由f(x)为偶函数,得,化简成xlg(x2+1﹣m2x2)=0对恒成立,从而得到x2+1﹣m2x2=1,求出m=±1即可.【详解】若函数f(x)为偶函数,∴f(﹣x)=f(x),即;得对恒成立,∴x2+1﹣m2x2=1,∴(1﹣m2)x2=0,∴1﹣m2=0,∴m=±1.故选C.本题考查偶函数的定义,以及对数的运算性质,平方差公式,属于基础题.5、D【解析】

根据等价转化的思想,可得在定义域中有两个不同的实数根,然后利用根的分布情况,进行计算,可得结果.【详解】,令,方程有两个不等正根,,则:故选:D本题考查根据函数极值点求参数,还考查二次函数根的分布问题,难点在于使用等价转化的思想,化繁为简,属中档题.6、A【解析】分析:先根据赋值法得各项系数之和,再根据二项式系数性质得,最后根据解出详解:因为各项系数之和为,二项式系数之和为,因为,所以,选A.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.7、A【解析】

先求出二次函数在区间内有两个零点,所需要的条件,然后再平面直角坐标系内,画出可行解域,然后分析得出的取值范围.【详解】因为二次函数在区间内有两个零点,所以有:,对应的平面区域为下图所示:则令,则的取值范围为,故本题选A.本题考查了一元二次方程零点分布问题,正确画出可行解域是解题的关键.8、C【解析】设公差为,,,联立解得,故选C.点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如为等差数列,若,则.9、D【解析】

写设椭圆1上的点为M(3cosθ,2sinθ),利用点到直线的距离公式,结合三角函数性质能求出椭圆1上的点到直线x+2y﹣4=1的距离取最小值.【详解】解:设椭圆1上的点为M(3cosθ,2sinθ),则点M到直线x+2y﹣4=1的距离:d|5sin(θ+α)﹣4|,∴当sin(θ+α)时,椭圆1上的点到直线x+2y﹣4=1的距离取最小值dmin=1.故选D.本题考查直线与圆的位置关系、椭圆的参数方程以及点到直线的距离、三角函数求最值,属于中档题.10、C【解析】

在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.11、A【解析】

根据虚数单位的运算性质,直接利用复数代数形式的除法运算化简求值.【详解】解:,,故选A.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.12、C【解析】

将两边同时平方,利用商数关系将正弦和余弦化为正切,通过解方程求出,再利用二倍角的正切公式即可求出.【详解】再同时除以,整理得故或,代入,得.故选C.本题主要考查了三角函数的化简和求值,考查了二倍角的正切公式以及平方关系,商数关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,令,此时函数在其极值点处的切线方程为考点::导数的几何意义.14、【解析】

设甲、乙两地分别为,地球的中心为,先求出北纬60°圈所在圆的半径,再求A、B两地在北纬60°圈上对应的圆心角,得到线段AB的长,解三角形求出的大小,利用弧长公式求这两地的球面距离.【详解】设甲、乙两地分别为,北纬圈所在圆的半径为,它们在纬度圈上所对应的劣弧长等于(为地球半径),(是两地在北纬60圈上对应的圆心角),故.所以线段设地球的中心为,则是等边三角形,所以,故这两地的球面距离是.本题考查球面距离及相关计算,扇形弧长和面积是常用公式,结合图形是关键.15、【解析】

根据两个向量平行的充要条件,写出向量的坐标之间的关系,之后得出,利用基本不等式求得其最小值,得到结果.【详解】∵,,其中,且与共线∴,即∴,当且仅当即时取等号∴的最小值为.该题考查的是有关向量共线的条件,涉及到的知识点有向量共线坐标所满足的条件,利用基本不等式求最值,属于简单题目.16、0.1【解析】分析:随机变量服从正态分布,且,利用正态分布的性质,答案易得.详解:随机变量ξ服从正态分布,且,,

故答案为:0.1.点睛:本题考查正态分布曲线的重点及曲线所表示的意义,解题的关键是正确正态分布曲线的重点及曲线所表示的意义,由曲线的对称性求出概率,本题是一个数形结合的题,识图很重要.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线的直角坐标方程为,曲线的普通方程为;(2).【解析】

(1)利用两角和的余弦公式以及可将的极坐标方程转化为普通方程,在曲线的参数方程中消去参数可得出曲线的普通方程;(2)求出直线的倾斜角为,可得出直线的参数方程为(为参数),并设点、的参数分别为、,将直线的参数方程与曲线普通方程联立,列出韦达定理,由,代入韦达定理可求出的值.【详解】(1)因为,所以,由,,得,即直线的直角坐标方程为;因为消去,得,所以曲线的普通方程为;(2)因为点的直角坐标为,过的直线斜率为,可设直线的参数方程为(为参数),设、两点对应的参数分别为、,将参数方程代入,得,则,.所以,解得.本题考查参数方程、极坐标与普通方程的互化,同时也考查了直线参数方程的几何意义的应用,求解时可将直线的参数方程与曲线的普通方程联立,结合韦达定理进行计算,考查运算求解能力,属于中等题.18、(Ⅰ);(Ⅱ)详见解析;(Ⅲ)详见解析.【解析】

(Ⅰ)由题意,得,可求出;(Ⅱ)由,得与同号,可得,再由可得,问题得证;(Ⅲ)令,得,当时,由可得,再由可使问题得证.【详解】(Ⅰ)解:由题意,,解得或(舍去).(Ⅱ)证明:因为,且,所以与同号,…,与也同号.而,因此.又,所以.综上,有成立.(Ⅲ)证明:令,则,且.由,得到.于是当时,,又,因此,即.考虑,故,即.当时,也成立.综上所述,.本题考查了数列递推式,数列求和,考查了放缩法证明不等式,考查了推理能力和计算能力,属于难题.19、(Ⅰ);(Ⅱ),证明见解析.【解析】

(Ⅰ)通过讨论a的范围,去掉绝对值,解不等式,确定的范围即可;

(Ⅱ)根据绝对值不等式的性质判断即可.【详解】(I)因为,所以.①当时,得,解得,所以;②当时,得,解得,所以;③当时,得,解得,所以;综上所述,实数的取值范围是(II),因为,所以本题考查了解绝对值不等式问题,考查不等式的证明,是一道中档题.20、(1)(2)【解析】

(1)利用平方和为1消去参数得到曲线C的直角坐标方程,再利用,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,加上半径即可得到最大距离.【详解】(1)由,得,两式两边平方并相加,得,所以曲线表示以为圆心,2为半径的圆.将代入得,化简得所以曲线的极坐标方程为(2)由,得,即,得所以直线的直角坐标方程为因为圆心到直线的距离,所以曲线上的点到直线的最大距离为.本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题.21、(1)第3项的系数为24=240.(2)含x2的项为第2项,且T2=-192x2.【解析】试题分析:(1)根据二项展开式的通项,即可求解第项的二项式系数及系数;(2)由二项展开式的痛项,可得当时,即可得到含的系数.试题解析:(1)第3项的二项式系数为C=15,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论