山西省大同市口泉中学2024-2025学年高二下数学期末学业水平测试模拟试题含解析_第1页
山西省大同市口泉中学2024-2025学年高二下数学期末学业水平测试模拟试题含解析_第2页
山西省大同市口泉中学2024-2025学年高二下数学期末学业水平测试模拟试题含解析_第3页
山西省大同市口泉中学2024-2025学年高二下数学期末学业水平测试模拟试题含解析_第4页
山西省大同市口泉中学2024-2025学年高二下数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省大同市口泉中学2024-2025学年高二下数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是虚数单位,复数为实数,则实数的值为()A.1 B.2 C. D.2.某村庄对改村内50名老年人、年轻人每年是否体检的情况进行了调查,统计数据如表所示:每年体检每年未体检合计老年人7年轻人6合计50已知抽取的老年人、年轻人各25名.则完成上面的列联表数据错误的是()A. B. C. D.3.已知定义在上的函数满足,且函数在上是减函数,若,,,则,,的大小关系为()A. B. C. D.4.在极坐标系中,为极点,曲线与射线的交点为,则()A. B. C. D.5.在等比数列中,“是方程的两根”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知随机变量,则参考数据:若,A.0.0148 B.0.1359 C.0.1574 D.0.3148.7.椭圆的长轴长为()A.1 B.2 C. D.8.已知,则中()A.至少有一个不小于1 B.至少有一个不大于1C.都不大于1 D.都不小于19.执行如图所示的程序框图,则输出S的值为()A. B.2 C.-3 D.10.已知函数的部分图象如图所示,其中N,P的坐标分别为,,则函数f(x)的单调递减区间不可能为()A. B. C. D.11.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为()A.0.12 B.0.42 C.0.46 D.0.8812.有一项活动,在4名男生和3名女生中选2人参加,必须有男生参加的选法有()种.A.18 B.20 C.24 D.30二、填空题:本题共4小题,每小题5分,共20分。13.已知,则________.14.的展开式的第3项为______.15.在棱长均为的正三棱柱中,________.16.若在区间上恒成立,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,以为极点,为极轴建立极坐标系,曲线的极坐标方程是,直线的参数方程是(为参数).求直线被曲线截得的弦长.18.(12分)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.(1)若,求C与l的交点坐标;(2)若C上的点到l的距离的最大值为,求.19.(12分)已知函数.(1)判断的奇偶性并予以证明;(2)求不等式的解集.20.(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.21.(12分)在直角坐标系中,直线:,圆:(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)若直线的极坐标方程为,设,的交点为,,求的面积.22.(10分)已知数列的前项和为,且,.(1)求数列的通项公式;(2)求数列的前项和为.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

由复数代数形式的乘除运算化简,再由虚部为0可得答案.【详解】解:,复数为实数,可得,,故选:C.本题主要考查复数代数形式的乘除运算法则,属于基础题,注意运算准确.2、D【解析】分析:先根据列联表列方程组,解得a,b,c,d,e,f,再判断真假.详解:因为,所以选D.点睛:本题考查列联表有关概念,考查基本求解能力.3、B【解析】

利用函数奇偶性和单调性可得,距离y轴近的点,对应的函数值较小,可得选项.【详解】因为函数满足,且函数在上是减函数,所以可知距离y轴近的点,对应的函数值较小;,且,所以,故选B.本题主要考查函数性质的综合应用,侧重考查数学抽象和直观想象的核心素养.4、B【解析】分析:将两方程联立求出,再根据的几何意义即可得到OA的值.详解:由题可得:,由的几何意义可得,故选B.点睛:考查极坐标的定义和的几何意义:表示原点到A的距离,属于基础题.5、A【解析】

由韦达定理可得a4+a12=﹣3,a4•a12=1,得a4和a12均为负值,由等比数列的性质可得.【详解】∵a4,a12是方程x2+3x+1=0的两根,∴a4+a12=﹣3,a4•a12=1,∴a4和a12均为负值,由等比数列的性质可知a8为负值,且a82=a4•a12=1,∴a8=﹣1,故“a4,a12是方程x2+3x+1=0的两根”是“a8=±1”的充分不必要条件.故选A.本题考查等比数列的性质和韦达定理,注意等比数列隔项同号,属于基础题.6、B【解析】

根据正态分布函数的对称性去分析计算相应概率.【详解】因为即,所以,,又,,且,故选:B.本题考查正态分布的概率计算,难度较易.正态分布的概率计算一般都要用到正态分布函数的对称性,根据对称性,可将不易求解的概率转化为易求解的概率.7、B【解析】

将椭圆方程化成标准式,根据椭圆的方程可求,进而可得长轴.【详解】解:因为,所以,即,,所以,故长轴长为故选:本题主要考查了椭圆的定义的求解及基本概念的考查,属于基础题.8、B【解析】

用反证法证明,假设同时大于,推出矛盾得出结果【详解】假设,,,三式相乘得,由,所以,同理,,则与矛盾,即假设不成立,所以不能同时大于,所以至少有一个不大于,故选本题考查的是用反证法证明数学命题,把要证的结论进行否定,在此基础上推出矛盾,是解题的关键,同时还运用了基本不等式,本题较为综合9、A【解析】

模拟执行程序框图,依次写出每次循环得到、的值,可得答案【详解】第1次执行循环体后:,;第2次执行循环体后:,;第3次执行循环体后:,;第4次执行循环体后:,;经过4次循环后,可以得到周期为4,因为,所以输出的值为,故选A.本题考查程序框图的问题,本题解题的关键是找出循环的周期,属于基础题.10、D【解析】

利用排除法,根据周期选出正确答案.【详解】根据题意,设函数的周期为T,则,所以.因为在选项D中,区间长度为

∴在区间上不是单调减函数.所以选择D本题考查了余弦函数的图象与性质的应用问题,解决此类问题需要结合单调性、周期等.属于中等题.11、D【解析】由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12.∴至少有一人被录取的概率为1-0.12=0.88.故选D.考点:相互独立事件的概率.12、A【解析】

分类:(1)人中有人是男生;(2)人都是男生.【详解】若人中有人是男生,则有种;若人都是男生,则有种;则共有种选法.排列组合中,首先对于两个基本原理:分类加法、分步乘法,要能充分理解,它是后面解答排列组合综合问题的基础.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

将分子化为,然后在分式的分子和分母中同时除以,利用弦化切的思想进行计算.【详解】,故答案为.本题考查利用弦化切思想进行求值,弦化切一般适用于以下两种情况:(1)分式是关于角的次分式齐次式,在分式的分子和分母中同时除以,可将分式化为切的代数式进行计算;(2)角弦的二次整式,先除以,将代数式化为角的二次分式齐次式,然后在分式的分子和分母中同时除以,可将代数式化为切的代数式进行计算.14、【解析】

利用二项式定理展开式,令可得出答案.【详解】的展开式的第项为,故答案为.本题考查二项式指定项,解题时充分利用二项式定理展开式,考查计算能力,属于基础题.15、【解析】

首先画出正三棱柱,求出边长和,最后求面积.【详解】因为是正三棱柱,并且棱长都为1,是腰长为,底边长为1的等腰三角形,所以底边的高,.故答案为本题考查几何体中几何量的求法,意在考查空间想象能力,属于基础题型.16、【解析】分析:利用换元法简化不等式,令t=2x﹣2﹣x,t∈[,],22x+2﹣2x=t2+2,整理可得a≥﹣(t+),t∈[,]根据函数y=t+的单调性求出最大值即可.详解:a(2x﹣2﹣x)+≥0在x∈[1,2]时恒成立,令t=2x﹣2﹣x,t∈[,],∴22x+2﹣2x=t2+2,∴a≥﹣(t+),t∈[,],显然当t=是,右式取得最大值为﹣,∴a≥﹣.故答案为[﹣,+∞).点睛:考查了换元法的应用和恒成立问题的转化思想应用.恒成立的问题的解决方法:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】分析:首先求得直角坐标方程,然后求得圆心到直线的距离,最后利用弦长公式整理计算即可求得最终结果;详解:利用加减消元法消去参数得曲线的直角坐标方程是,同时得到直线的普通方程是,圆心到直线的距离,则弦长为直线被曲线截得的弦长为点睛:本题考查了圆的弦长公式,极坐标方程、参数方程与直角坐标方程互化等,重点考查学生对基础概念的理解和计算能力,属于中等题.18、(1),;(2)或.【解析】试题分析:(1)直线与椭圆的参数方程化为直角坐标方程,联立解交点坐标;(2)利用椭圆参数方程,设点,由点到直线距离公式求参数.试题解析:(1)曲线的普通方程为.当时,直线的普通方程为.由解得或.从而与的交点坐标为,.(2)直线的普通方程为,故上的点到的距离为.当时,的最大值为.由题设得,所以;当时,的最大值为.由题设得,所以.综上,或.点睛:本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表示出椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数的值.19、(1)奇函数,证明见解析.(2).【解析】分析:(1)先求定义域,判断是否关于原点对称,再研究与关系,根据奇偶性定义判断,(2)先根据对数函数单调性化简不等式,再解分式不等式得结果.详解:(1)要使函数有意义.则,解得.故所求函数的定义域为.由(1)知的定义域为,设,则.且,故为奇函数.(2)因为在定义域内是增函数,因为,所以,解得.所以不等式的解集是.点睛:判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立.20、(1);(2)见解析.【解析】

(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可.(II)分切线斜率存在与不存在讨论,设出M,N的坐标,设出切线方程,结合圆心到切线距离公式,得到m,k的关系式,将直线方程代入椭圆方程,利用根与系数关系,表示,结合三角形相似,证明结论,即可.【详解】(Ⅰ)设椭圆的半焦距为,由椭圆的离心率为知,,∴椭圆的方程可设为.易求得,∴点在椭圆上,∴,解得,∴椭圆的方程为.(Ⅱ)当过点且与圆相切的切线斜率不存在时,不妨设切线方程为,由(Ⅰ)知,,,∴.当过点且与圆相切的切线斜率存在时,可设切线的方程为,,∴,即.联立直线和椭圆的方程得,∴,得.∵,∴,,∴.综上所述,圆上任意一点处的切线交椭圆于点,都有.在中,由与相似得,为定值.本道题考查了椭圆方程的求解,考查了直线与椭圆位置关系,考查了向量的坐标运算,难度偏难.21、(1)的极坐标方程为,的极坐标方程为.(2).【解析】分析:(1)直接利用可得的极坐标方程,:利用平方法消去参数,可得其普通方程,利用互化公式可得的极坐标方程;(2)将代入,得,利用极径的几何意义可得,由三角形面积公式可得结果.详解:(1)因为,,∴的极坐标方程为,的极坐标方程为.(2)将代入,得,解得,,.因为的半径为,则的面积.点睛:参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程;利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.22、(1)(2)【解析】试题分析:(1)利用和项与通项关系,当时,,将条件转化为项之间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论