天津市大白高中2024-2025学年数学高二下期末综合测试试题含解析_第1页
天津市大白高中2024-2025学年数学高二下期末综合测试试题含解析_第2页
天津市大白高中2024-2025学年数学高二下期末综合测试试题含解析_第3页
天津市大白高中2024-2025学年数学高二下期末综合测试试题含解析_第4页
天津市大白高中2024-2025学年数学高二下期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市大白高中2024-2025学年数学高二下期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某班级有男生人,女生人,现选举名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为,则的数学期望为()A. B. C. D.2.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.双曲线的左右焦点分别为F1,F2,过F1的直线交曲线左支于A,B两点,△F2AB是以A为直角顶点的直角三角形,且∠AF2B=30°.若该双曲线的离心率为e,则e2=()A. B. C. D.4.设全集U={|﹣1<x<5},集合A={1,3},则集合∁UA的子集的个数是()A.16 B.8 C.7 D.45.已知函数,若在上有解,则实数的取值范围为()A. B. C. D.6.已知命题:,命题:,且是的必要不充分条件,则实数的取值范围是()A. B. C. D.7.一个球从100米高处自由落下,每次着地后又跳回到原高度的一半再落下,则右边程序框图输出的S表示的是()A.小球第10次着地时向下的运动共经过的路程B.小球第10次着地时一共经过的路程C.小球第11次着地时向下的运动共经过的路程D.小球第11次着地时一共经过的路程8.若实数满足约束条件,且最大值为1,则的最大值为()A. B. C. D.9.已知的二项展开式的各项系数和为32,则二项展开式中的系数为()A.5 B.10 C.20 D.4010.已知随机变量的概率分布如下表,则()A. B. C. D.11.下列函数既是偶函数,又在上为减函数的是()A. B. C. D.12.已知函数,其中为自然对数的底数,则对任意,下列不等式一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.用一块半径为2分米的半圆形薄铁皮制作一个无盖的圆锥形容器,若衔接部分忽略不计,则该容器的容积为________立方分米.14.在平面几何中有如下结论:若正三角形的内切圆周长为,外接圆周长为,则.推广到空间几何可以得到类似结论:若正四面体的内切球表面积为,外接球表面积为,则__________.15.在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角的大小为___________.16.已知复数,则复数______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在各项均为正数的数列中,且.(1)当时,求的值;(2)求证:当时,.18.(12分)设函数,.(1)当时,解不等式;(2)若,,求a的取值范围.19.(12分)已知复数(i是虚数单位)是关于x的实系数方程根.(1)求的值;(2)复数满足是实数,且,求复数的值.20.(12分)已知函数.(1)当时,解不等式;(2)若存在满足,求实数a的取值范围.21.(12分)已知数列满足().(1)计算,,,并写出与的关系;(2)证明数列是等比数列,并求出数列的通项公式.22.(10分)每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查,该调查机构从该校随机抽查了名不同性别的学生,现已得知人中喜爱阅读的学生占,统计情况如下表喜爱不喜爱合计男生女生合计(1)完成列联表,根据以上数据,能否有的把握认为是否喜爱阅读与被调查对象的性别有关?请说明理由:(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取位学生进行调查,求抽取的位学生中至少有人喜爱阅读的概率,(以下临界值及公式仅供参考),

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:先写出的取值,再分别求的概率,最后求的数学期望.详解:由题得所以故答案为:C点睛:(1)本题主要考查离散型随机变量的分布列和数学期望,意在考查学生对这些基础知识的掌握能力.(2)离散型随机变量的数学期望2、B【解析】,对应点,位于第二象限,选B.3、D【解析】

设,根据是以为直角顶点的直角三角形,且,以及双曲线的性质可得,再根据勾股定理求得的关系式,即可求解.【详解】由题意,设,如图所示,因为是以为直角顶点的直角三角形,且,由,所以,由,所以,所以,即,所以,所以,,在直角中,,即,整理得,所以,故选D.本题主要考查了双曲线的定义,以及双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围)..4、B【解析】因为,,所以,集合的子集的个数是,故选B.5、D【解析】

首先判断函数单调性为增.,将函数不等式关系转化为普通的不等式,再把不等式转换为两个函数的大小关系,利用图像得到答案.【详解】在定义域上单调递增,,则由,得,,则当时,存在的图象在的图象上方.,,则需满足.选D.本题考查了函数的单调性,解不等式,将不等式关系转化为图像关系等知识,其中当函数单调递增时,是解题的关键.6、A【解析】

首先对两个命题进行化简,解出其解集,由是的必要不充分条件,可以得到关于的不等式,解不等式即可求出的取值范围【详解】由命题:解得或,则,命题:,,由是的必要不充分条件,所以故选结合“非”引导的命题考查了必要不充分条件,由小范围推出大范围,列出不等式即可得到结果,较为基础。7、C【解析】结合题意阅读流程图可知,每次循环记录一次向下运动经过的路程,上下的路程相等,则表示小球第11次着地时向下的运动共经过的路程.本题选择C选项.8、A【解析】

首先画出可行域,根据目标函数的几何意义得到,再利用基本不等式的性质即可得到的最大值.【详解】由题知不等式组表示的可行域如下图所示:目标函数转化为,由图易得,直线在时,轴截距最大.所以.因为,即,当且仅当,即,时,取“”.故选:A本题主要考查基本不等式求最值问题,同时考查了线性规划,属于中档题.9、B【解析】

首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B.本题考查二项式展开系数、通项等公式,属于基础题.10、C【解析】由分布列的性质可得:,故选C.11、B【解析】

通过对每一个选项进行判断得出答案.【详解】对于选项:函数在既不是偶函数也不是减函数,故排除;对于选项:函数既是偶函数,又在是减函数;对于选项:函数在是奇函数且增函数,故排除;对于选项:函数在是偶函数且增函数,故排除;故选:B本题考查了函数的增减性以及奇偶性的判断,属于较易题.12、A【解析】

,可得在上是偶函数.函数,利用导数研究函数的单调性即可得出结果.【详解】解:,在上是偶函数.函数,,令,则,函数在上单调递增,,函数在上单调递增.,,.故选:A.本题考查利用导数研究函数的单调性、函数的奇偶性,不等式的性质,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先由题意得到半圆形的弧长为,设制作的圆锥形容器的底面半径为,求出底面半径与圆锥的高,从而可求出结果.【详解】半径为2分米的半圆形的弧长为,设制作的圆锥形容器的底面半径为,则,则;则圆锥形容器的高为,所以容器的容积为.故答案为:本题主要考查求圆锥的体积,熟记圆锥的体积公式即可,属于常考题型.14、【解析】分析:平面图形类比空间图形,二维类比三维得到,类比平面几何的结论,确定正四面体的外接球和内切球的半径之比,即可求得结论.详解:平面几何中,圆的周长与圆的半径成正比,而在空间几何中,球的表面积与半径的平方成正比,因为正四面体的外接球和内切球的半径之比是,,故答案为.点睛:本题主要考查类比推理,属于中档题.类比推理问题,常见的类型有:(1)等差数列与等比数列的类比;(2)平面与空间的类比;(3)椭圆与双曲线的类比;(4)复数与实数的类比;(5)向量与数的类比.15、45°【解析】

先确定直线PA与平面ABCD所成的角,然后作两异面直线PA和BE所成的角,最后求解.【详解】∵四棱锥P-ABCD是正四棱锥,∴就是直线PA与平面ABCD所成的角,即=60°,∴是等边三角形,AC=PA=2,设BD与AC交于点O,连接OE,则OE是的中位线,即,且,∴是异面直线PA与BE所成的角,正四棱锥P-ABCD中易证平面PAC,∴,中,,∴是等腰直角三角形,∴=45°.∴异面直线PA与BE所成的角是45°.故答案为45°.本题考查异面直线所成的角,考查直线与平面所成的角,考查正四棱锥的性质.要注意在求空间角时,必须作出其“平面角”并证明,然后再计算.16、【解析】

根据共轭复数的表示方法算出即可.【详解】由,则,所以故答案为:本题主要考查共轭复数的概念,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】

(1)推导出,解得,从而,由此能求出的值;(2)利用分析法,只需证,只需证,只需证,根据基本不等式即可得到结果.【详解】(1)∵,∴,∴,解得,同理解得即;(2)要证时,,只需证,只需证,只需证,只需证,只需证,根据基本不等式得,所以原不等式成立.本题考查实数值的求法,考查数列的递推公式、递推思想等基础知识,考查运算求解能力,是中档题.18、(1);(2).【解析】

(1)利用零点分段法去绝对值解不等式即可.(2)利用绝对值意义求出的最小值,使,解绝对值不等式即可.【详解】(1)当时,,当时,,当时,,综上所述:(2),本题考查了绝对值不等式的解法,考查了分类讨论的思想,属于基础题.19、(1)(2)或.【解析】

(1)实系数方程虚根是互为共轭复数的,得出另一根为,根据韦达定理即可得解.(2)设,由是实数,得出关于的方程,又得的另一个方程,联立即可解得的值,即得解.【详解】(1)实系数方程虚根是互为共轭复数的,所以由共轭虚根定理另一根是,根据韦达定理可得.(2)设,得又得,所以或,因此或w=.本题考查了实系数一元二次方程的虚根成对原理、根与系数的关系,复数的乘法及模的运算,考查了推理能力与计算能力,属于中档题.20、(1)或;(2)【解析】

(1)以为分界点分段讨论解不等式。(2)原不等式可化为,由绝对值不等式求得的最小值小于3,解得参数.【详解】当时,,当时,不等式等价于,解得,即;当时,不等式等价于,解得,即;当时,不等式等价于,解得,即.综上所述,原不等式的解集为或.由,即,得,又,,即,解得.所以。对于绝对值不等式的求解,我们常用分段讨论的方法,也就是按绝对值的零点把数轴上的实数分成多段进行分段讨论,要注意分段时不重不漏,分段结果是按先交后并做运算。21、(1),,;;(2)证明见解析,【解析】

(1)代入,和,计算得到,,,通过,得到与的关系;(2)根据(1)中所得与的关系,得到,并求出的值,从而得到是等比数列,写出其通项,再得到的通项.【详解】(1)由已知可得,时,,即,时,,即,时,,即.由(),得,两式相减,得,即.(2)证明:由(1)得,且,∴,∴数列是等比数列,公比为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论