




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省眉山市仁寿县2025年数学高二下期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的右焦点为,短轴的一个端点为,直线与椭圆相交于、两点.若,点到直线的距离不小于,则椭圆离心率的取值范围为A. B. C. D.2.若展开式的二项式系数之和为64,则展开式的常数项为()A.10 B.20 C.30 D.1203.的展开式中各项系数之和为()A. B.16 C.1 D.04.命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为()A. B. C. D.5.设随机变量服从正态分布,若,则实数等于()A. B. C. D.6.函数在处的切线方程是()A. B. C. D.7.已知命题若实数满足,则或,,,则下列命题正确的是()A. B. C. D.8.设全集为R,集合,,则A. B. C. D.9.若对于任意实数,函数恒大于零,则实数的取值范围是()A. B. C. D.10.,,三个人站成一排照相,则不站在两头的概率为()A. B. C. D.11.已知曲线在点处切线的倾斜角为,则等于()A.2B.-2C.3D.-112.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是A.72 B.120 C.144 D.168二、填空题:本题共4小题,每小题5分,共20分。13.已知的展开式中的系数为,则__________.14.已知对任意正实数,都有,类比可得对任意正实数都有_______________.15.矩阵的逆矩阵为__________.16.当双曲线M:的离心率取得最小值时,双曲线M的渐近线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时,的数学期望达到最大值?18.(12分)如图,四棱锥中,底面为平行四边形,底面,是棱的中点,且.(1)求证:平面;(2)如果是棱上一点,且直线与平面所成角的正弦值为,求的值.19.(12分)某种农作物可以生长在滩涂和盐碱地,它的灌溉是将海水稀释后进行灌溉.某实验基地为了研究海水浓度对亩产量(吨)的影响,通过在试验田的种植实验,测得了该农作物的亩产量与海水浓度的数据如下表:海水浓度亩产量(吨)残差绘制散点图发现,可以用线性回归模型拟合亩产量(吨)与海水浓度之间的相关关系,用最小二乘法计算得与之间的线性回归方程为.(1)求的值;(2)统计学中常用相关指数来刻画回归效果,越大,回归效果越好,如假设,就说明预报变量的差异有是解释变量引起的.请计算相关指数(精确到),并指出亩产量的变化多大程度上是由浇灌海水浓度引起的?(附:残差,相关指数,其中)20.(12分)选修4-5:不等式选讲设函数.(1)若,求函数的值域;(2)若,求不等式的解集.21.(12分)如图,设△ABC的三个内角A、B、C对应的三条边分别为,且角A、B、C成等差数列,,线段AC的垂直平分线分别交线段AB、AC于D、E两点.(1)若△BCD的面积为,求线段CD的长;(2)若,求角A的值.22.(10分)如图,在四面体中,,分别是线段,的中点,,,,直线与平面所成的角等于.(1)证明:平面平面;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据椭圆对称性可证得四边形为平行四边形,根据椭圆定义可求得;利用点到直线距离构造不等式可求得,根据可求得的范围,进而得到离心率的范围.【详解】设椭圆的左焦点为,为短轴的上端点,连接,如下图所示:由椭圆的对称性可知,关于原点对称,则又四边形为平行四边形又,解得:点到直线距离:,解得:,即本题正确选项:本题考查椭圆离心率的求解,重点考查椭圆几何性质,涉及到椭圆的对称性、椭圆的定义、点到直线距离公式的应用等知识.2、B【解析】试题分析:根据二项式的展开式的二项式系数是14,写出二项式系数的表示式,得到次数n的值,写出通项式,当x的指数是0时,得到结果.解:∵Cn°+Cn1+…+Cnn=2n=14,∴n=1.Tr+1=C1rx1﹣rx﹣r=C1rx1﹣2r,令1﹣2r=0,∴r=3,常数项:T4=C13=20,故选B.考点:二项式系数的性质.3、C【解析】
令,由此求得二项式的展开式中各项系数之和.【详解】令,得各项系数之和为.故选:C本小题主要考查二项式展开式各项系数之和的求法,属于基础题.4、C【解析】
如图,在中,可证明,且与交于O,同理可证其余顶点与对面重心的连线交于O,即得解.【详解】如图在四面体中,设是的重心,连接并延长交CD于E,连接,则经过,在中,,且与交于O,同理,其余顶点与对面重心的连线交于O,也满足比例关系.故选:C本题考查了三角形和四面体性质的类比推理,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.5、B【解析】分析:根据随机变量符合正态分布,又知正态曲线关于x=4对称,得到两个概率相等的区间关于x=4对称,得到关于a的方程,解方程即可.详解:∵随机变量ξ服从正态分布N(4,3),∵P(ξ<a﹣5)=P(ξ>a+1),∴x=a﹣5与x=a+1关于x=4对称,∴a﹣5+a+1=8,∴2a=12,∴a=6,故选:C.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.6、A【解析】
求导函数,切点切线的斜率,求出切点的坐标,即可得到切线方程.【详解】求曲线y=exlnx导函数,可得f′(x)=exlnx∴f′(1)=e,∵f(1)=0,∴切点(1,0).∴函数f(x)=exlnx在点(1,f(1))处的切线方程是:y﹣0=e(x﹣1),即y=e(x﹣1)故选:A.本题考查导数的几何意义,考查学生的计算能力,属于基本知识的考查.7、C【解析】由题意可知,p是真命题,q是假命题,则是真命题.本题选择C选项.8、B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.9、D【解析】
求出函数的导数,根据导数的符号求出函数的单调区间,求出最值,即可得到实数的取值范围【详解】当时,恒成立若,为任意实数,恒成立若时,恒成立即当时,恒成立,设,则当时,,则在上单调递增当时,,则在上单调递减当时,取得最大值为则要使时,恒成立,的取值范围是故选本题以函数为载体,考查恒成立问题,解题的关键是分离含参量,运用导数求得新函数的最值,继而求出结果,当然本题也可以不分离参量来求解,依然运用导数来分类讨论最值情况。10、B【解析】分析:,,三个人站成一排照相,总的基本事件为种,不站在两头,即站中间,则有种情况,从而即可得到答案.详解:,,三个人站成一排照相,总的基本事件为种,不站在两头,即站中间,则有种情况,则不站在两头的概率为.故选:B.点睛:本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.11、A【解析】因为,所以,由已知得,解得,故选A.12、B【解析】分两类,一类是歌舞类用两个隔开共种,第二类是歌舞类用三个隔开共种,所以N=+=120.种.选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:展开式中的系数为前一项中常数项与后一项的二次项乘积,加上第一项的系数与后一项的系数乘积的和,由此列方程求得的值.详解:,其展开式中含项的系数为,解得,故答案为.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.14、.【解析】分析:根据类比的定义,按照题设规律直接写出即可.详解:由任意正实数,都有,推广到则.故答案为点睛:考查推理证明中的类比,解此类题型只需按照原题规律写出即可,属于基础题.15、【解析】
通过逆矩阵的定义构建方程组即可得到答案.【详解】由逆矩阵的定义知:,设,由题意可得:,即解得,因此.本题主要考查逆矩阵的相关计算,难度不大.16、【解析】
求出双曲线离心率的表达式,求解最小值,求出m,即可求得双曲线渐近线方程.【详解】解:双曲线M:,显然,双曲线的离心率,当且仅当时取等号,此时双曲线M:,则渐近线方程为:.故答案为:.本题考查双曲线渐近线方程的求法,考查基本不等式的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析;(2)520.【解析】分析:(1)根据题意所有的可能取值为200,300,500,由表格数据知,,;(2)分两种情况:当时,当时,分别得到利润表达式.详解:(1)由题意知,所有的可能取值为200,300,500,由表格数据知,,.因此的分布列为0.20.40.4(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑当时,若最高气温不低于25,则;若最高气温位于区间,则;若最高气温低于20,则因此当时,若最高气温不低于20,则,若最高气温低于20,则,因此所以时,的数学期望达到最大值,最大值为520元.方法点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布则此随机变量的期望可直接利用这种典型分布的期望公式求得.18、(1)证明见解析;(2).【解析】试题分析:(1)由所以.又因为底面平面;(2)如图以为原点建立空间直角坐标系,求得平面的法向量和.试题解析:(1)连结,因为在中,,所以,所以.因为,所以.又因为底面,所以,因为,所以平面(2)如图以为原点,所在直线分别为轴建立空间直角坐标系,则.因为是棱的中点,所以.所以,设为平面的法向量,所以,即,令,则,所以平面的法向量因为是在棱上一点,所以设.设直线与平面所成角为,因为平面的法向量,所以.解得,即,所以考点:1、线面垂直;2、线面角.19、(1);(2).【解析】分析:(1)先求出,再代入方程即得的值;再求,最后利用残差定义求m,n.(2)直接利用相关指数公式求相关指数,并指出亩产量的变化多大程度上是由浇灌海水浓度引起的.详解:(1)因为,,所以,即,所以线性回归方程为,所以,.(2),所以相关指数,故亩产量的变化有是由海水浓度引起的.点睛:(1)本题主要考查回归方程的性质和残差,考查相关指数,意在考查学生对这些知识的掌握水平和计算能力.(2)称为样本点的中心,回归直线过样本点的中心.20、(1).(2).【解析】分析:(1)当时,,根据绝对值不等式的几何意义即可求出函数的值域;(2)当时,不等式即,对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果.详解:(1)当时,∵∴,函数的值域为(2)当时,不等式即①当时,得,解得,∴②当时,得。解得,∴③当时,得,解得,所以无解综上所述,原不等式的解集为点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.21、(1);(2)。【解析】试题分析:(1)由题三角形ABC的三个内角A,B,C成等差数列,结合内角和为,可以列出方程组,所以可以求出角,又已知,且三角形BCD的面积为,根据三角形面积公式可有,可以求出,在三角形BCD中,可以应用余弦定理求出CD边的长度;(2)在三角形BCD中,应用正弦定理:,所以可以求出,于是得到,所以,则,且DE为线段AC的垂直平分线,所以DA=DC,即三角形ADC为等腰直角三角形,所以可以求出A角的值。本题考查解利用正、余弦定理解三角形,要求学生掌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毛坯店面出租合同协议书
- 团队拓展训练合同协议书
- 水果店转让合同协议书
- 友谊合同协议书怎么写的
- 美容美发商业计划书概述
- ai教育项目计划书
- 广告投放合同协议书样本
- 中国注射液用卤化丁基橡胶塞行业市场占有率及投资前景预测分析报告
- 亲子研学商业计划书
- 菜鸟驿站合同协议书范本
- 2025年船舶驾驶员考试试卷及答案
- 2025版个人借款合同模板下载
- 制造部生产效率提升计划
- 宠物丢失谅解协议书
- 幼儿园中班科学活动公开课《飞机本领大》课件
- 体育竞彩考试题及答案
- 中国日用器皿行业市场前景预测及投资价值评估分析报告
- 2025年天津市西青区九年级二模数学试题(含部分答案)
- 2025年企业人力资源管理师考试真题及答案
- 2025-2030年中国玻璃容器行业市场发展趋势与前景展望战略分析报告
- 山东省济南市2025届高三三模化学试卷(含答案)
评论
0/150
提交评论