西安市东仪中学2024-2025学年数学高二第二学期期末质量跟踪监视试题含解析_第1页
西安市东仪中学2024-2025学年数学高二第二学期期末质量跟踪监视试题含解析_第2页
西安市东仪中学2024-2025学年数学高二第二学期期末质量跟踪监视试题含解析_第3页
西安市东仪中学2024-2025学年数学高二第二学期期末质量跟踪监视试题含解析_第4页
西安市东仪中学2024-2025学年数学高二第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西安市东仪中学2024-2025学年数学高二第二学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足,则的共轭复数为()A. B. C. D.2.已知二项式,且,则()A. B. C. D.3.直三棱柱中,,,、分别为、的中点,则异面直线与所成角的余弦值为()A. B. C. D.4.如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有()A.120种 B.240种 C.144种 D.288种5.现对某次大型联考的1.2万份成绩进行分析,该成绩服从正态分布,已知,则成绩高于570的学生人数约为()A.1200 B.2400 C.3000 D.15006.若直线的参数方程为(为参数),则直线的倾斜角为()A. B. C. D.7.已知正项等差数列满足:,等比数列满足:,则()A.-1或2 B.0或2 C.2 D.18.双曲线经过点,且离心率为3,则它的虚轴长是()A. B. C.2 D.49.已知两个随机变量X,Y满足X+2Y=4,且X~N1,  A.32,2 B.12,1 C.32,1 D.10.若点为圆C:的弦MN的中点,则弦MN所在直线的方程为()A. B. C. D.11.已知抛物线的焦点为F,点是抛物线C上一点,以点M为圆心的圆与直线交于E,G两点,若,则抛物线C的方程是()A. B.C. D.12.在我国南北朝时期,数学家祖暅在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.其意思是,用一组平行平面截两个几何体,若在任意等高处的截面面积都对应相等,则两个几何体的体积必然相等.根据祖暅原理,“两几何体A、B的体积不相等”是“A、B在等高处的截面面积不恒相等”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,抛物线的焦点为,准线为,,过抛物线上一点作的垂线,垂足为,与相交于点.若,且的面积为,则的值为______.14.已知,,若向量与共线,则在方向上的投影为______.15.已知函数,则______.16.若(x-ax2)6三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的左、右焦点分别为,,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆于,两点,且的周长为.(1)求椭圆的方程;(2)已知直线,互相垂直,直线过且与椭圆交于点,两点,直线过且与椭圆交于,两点.求的值.18.(12分)为了了解甲、乙两校学生自主招生通过情况,从甲校抽取51人,从乙校抽取41人进行分析.通过人数末通过人数总计甲校乙校31总计51(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;(2)现已知甲校A,B,C三人在某大学自主招生中通过的概率分别为,用随机变量X表示A,B,C三人在该大学自主招生中通过的人数,求X的分布列及期望E(X).参考公式:.参考数据:1.141.111.141.1241.111.1141.1112.1622.6153.8414.1245.5346.86911.82819.(12分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.(Ⅰ)若抽取后又放回,抽3次.(ⅰ)分别求恰2次为红球的概率及抽全三种颜色球的概率;(ⅱ)求抽到红球次数的数学期望及方差.(Ⅱ)若抽取后不放回,写出抽完红球所需次数的分布列.20.(12分)已知定义在R上的函数fx(1)求b的值,并判断函数fx(2)若对任意的t∈R,不等式ft2-2t21.(12分)已知直线(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点的直角坐标为,直线与曲线C的交点为,,求的值.22.(10分)已知某条有轨电车运行时,发车时间间隔(单位:分钟)满足:,.经测算,电车载客量与发车时间间隔满足:,其中.(1)求,并说明的实际意义;(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?并求每分钟最大净收益.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据复数的运算法则得,即可求得其共轭复数.【详解】由题:,所以,所以的共轭复数为.故选:A此题考查求复数的共轭复数,关键在于准确求出复数Z,需要熟练掌握复数的运算法则,准确求解.2、D【解析】

把二项式化为,求得其展开式的通项为,求得,再令,求得,进而即可求解.【详解】由题意,二项式展开式的通项为,令,可得,即,解得,所以二项式为,则,令,即,则,所以.本题主要考查了二项式定理的应用,其中解答中把二项式,利用二项式通项,合理赋值求解是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解析】

以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角的余弦值.【详解】以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,则、、、、,,、,设异面直线与所成角为,则,异面直线与所成角的余弦值为.故选:B本题考查了空间向量法求异面直线所成的角,解题的关键是建立恰当的坐标系,属于基础题.4、D【解析】

首先计算出“黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案”数,然后计算出“红色在左右两端,黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案”数,用前者减去后者,求得题目所求不同的涂色方案总数.【详解】不考虑红色的位置,黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案有种.这种情况下,红色在左右两端的涂色方案有种;从而所求的结果为种.故选D.本小题主要考查涂色问题,考查相邻问题、不在两端的排列组合问题的求解策略,考查对立事件的方法,属于中档题.5、A【解析】

根据正态分布的对称性,求得的值,进而求得高于的学生人数的估计值.【详解】,则成绩高于570的学生人数约为.故选A.本小题主要考查正态分布的对称性,考查计算正态分布指定区间的概率,属于基础题.6、D【解析】

将直线的参数方程化为普通方程,求出斜率,进而得到倾斜角。【详解】设直线的倾斜角为,将直线的参数方程(为参数)消去参数可得,即,所以直线的斜率所以直线的倾斜角,故选D.本题考查参数方程和普通方程的互化以及直线的倾斜角,属于简单题。7、C【解析】分析:根据数列的递推关系,结合等差和等比数列的定义和性质求出数列的通项公式即可得到结论.详解:由,得,

∵是正项等差数列,

,∵是等比数列,则,即

故选:D.点睛:本题主要考查对数的基本运算,根据等差数列和等比数列的性质,求出数列的通项公式是解决本题的关键.8、A【解析】

根据双曲线经过的点和离心率,结合列方程组,解方程组求得的值,进而求得虚轴长.【详解】将点代入双曲线方程及离心率为得,解得,故虚轴长,故本小题选A.本小题主要考查双曲线的离心率,考查双曲线的几何性质,考查方程的思想,属于基础题.解题过程中要注意:虚轴长是而不是.9、C【解析】

先由X~N1,  22,得E(X)=1,D(X)=4,然后由【详解】由题意X~N1,  22因为X+2Y=4,所以Y=2-1所以E(Y)=2-12E(X)=故选C.该题考查的正态分布的期望与方差,以及两个线性关系的变量的期望与方差之间的关系,属于简单题目.10、A【解析】

根据题意,先求出直线PC的斜率,根据MN与PC垂直求出MN的斜率,由点斜式,即可求出结果.【详解】由题意知,圆心的坐标为,则,由于MN与PC垂直,故MN的斜率,故弦MN所在的直线方程为,即.故选A本题主要考查求弦所在直线方程,熟记直线的点斜式方程即可,属于常考题型.11、C【解析】

作,垂足为点D.利用点在抛物线上、,结合抛物线的定义列方程求解即可.【详解】作,垂足为点D.由题意得点在抛物线上,则得.①由抛物线的性质,可知,,因为,所以.所以,解得:.②.由①②,解得:(舍去)或.故抛物线C的方程是.故选C.本题考查抛物线的定义与几何性质,属于中档题.12、A【解析】

先阅读题意,再由原命题与其逆否命题的真假及充分必要条件可得解【详解】由已知有”在任意等高处的截面面积都对应相等”是“两个几何体的体积必然相等“的充分条件不必要条件,结合原命题与其逆否命题的真假可得:“两几何体A、B的体积不相等”是“A、B在等高处的截面面积不恒相等”的充分不必要条件,故选:A.本题考查了阅读能力、原命题与其逆否命题的真假及充分必要条件,属中档题。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由题意知可求的坐标.由于轴,,,可得,.利用抛物线的定义可得,代入可取,再利用,即可得出的值.【详解】解:如图所示,,,.与轴平行,,,.,解得,代入可取,,解得.故答案为:.本题考查了抛物线的定义及其性质、平行线的性质、三角形面积计算公式.本题的关键在于求出的坐标后,如何根据已知面积列出方程.14、【解析】

,由向量与共线,得,解得,则在方向上的投影为,故答案为.15、.【解析】

由题设条件,先求出,.【详解】由题,可得则即答案为本题考查分段函数的函数值求法,解题时要认真审题,仔细解答,是基础题.16、4【解析】试题分析:(x-ax2考点:二项式定理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】分析:(1)根据周长确定,由通径确定,求得,因而确定椭圆的方程.(2)分析得直线、直线的斜率存在时,根据过焦点可设出AB直线方程为,因而直线的方程为.联立椭圆方程消去y,得到关于x的一元二次方程.由韦达定理求得和,进而.当AB斜率不存在时,求得,,所以.当直线的斜率为时,求得,,所以.即可判断.详解:(1)将代入,得,所以.因为的周长为,所以,,将代入,可得,所以椭圆的方程为.(2)(i)当直线、直线的斜率存在且不为时,设直线的方程为,则直线的方程为.由消去得.由韦达定理得,,所以,.同理可得..(ii)当直线的斜率不存在时,,,.(iii)当直线的斜率为时,,,.综上,.点睛:本题综合考查了圆锥曲线的定义、应用,对直线和圆锥曲线的位置问题,常见方法是设出直线方程,联立曲线方程,得到一元二次方程,利用韦达定理解决相关问题,思路较为清晰,关键是注意计算,综合性强,属于难题.18、(1)填表见解析,有99%的把握认为学生的自主招生通过情况与所在学校有关(2)见解析【解析】

(1)根据题中信息完善列联表,并计算出的观测值,结合临界值表找出犯错误的概率,于此可对题中的结论正误进行判断;(2)列出随机变量的可能取值,利用独立事件的概率乘法公式计算出随机变量在每个可能值处的概率,可列出随机变量的概率分布列,并由此计算出随机变量的数学期望.【详解】(1)列联表如下:通过人数未通过人数总计甲校214151乙校312141总计4151111由算得:,所以有99%的把握认为学生的自主招生通过情况与所在学校有关;(2)设自主招生通过分别记为事件,则.∴随机变量的可能取值为1,1,2,3.,,,.所以随机变量X的分布列为:.本题考查独立性检验的基本思想,考查随机变量分布列及其数学期望的求解,解题时要判断出随机变量所服从的分布列,结合分布列类型利用相关公式计算出相应的概率,考查计算能力,属于中等题.19、(1)①;②见解析;(2)见解析.【解析】分析:(1)(ⅰ)放回事件是独立重复试验,根据独立重复试验概率公式求结果,(ⅱ)抽到红球次数服从二项分布,根据二项分布期望与方差公式求结果,(2)先确定随机变量取法,再根据组合数求对应概率,列表可得分布列.详解:(1)抽1次得到红球的概率为,得白球的概率为得黑球的概率为①所以恰2次为红色球的概率为抽全三种颜色的概率②~B(3,),则,(2)的可能取值为2,3,4,5,,,即分布列为:2345P点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.20、⑴a=b=1;⑵(-∞ 【解析】试题分析:(1)根据函数奇偶性的定义和性质建立方程关系即可求a 试题解析:⑴∵f(x)是定义在R上的奇函数,∴,∴b=1.∴f(x)=1-2xa+2即a(2x-1)=∴a=1,∴a=b=1.⑵不等式f(t2-2t)+f(2又f(x)是R上的减函数,∴t2∴k<3t2-2t=3∴k<-1即实数k的取值范围是(-∞ 考点:函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论