




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市酉阳县2025届数学高二下期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.王老师在用几何画板同时画出指数函数()与其反函数的图象,当改变的取值时,发现两函数图象时而无交点,并且在某处只有一个交点,则通过所学的导数知识,我们可以求出当函数只有一个交点时,的值为()A. B. C. D.2.已知,则除以9所得的余数是A.2 B.3C.5 D.73.在极坐标系中,圆的圆心的极坐标是()A. B. C. D.4.已知集合,,则()A. B. C. D.5.在△ABC中内角A,B,C所对各边分别为,,,且,则角=A.60° B.120° C.30° D.150°6.设函数是定义在上的奇函数,且当时,,记,,,则的大小关系为()A. B. C. D.7.等比数列的前n项和为,已知,则A. B. C. D.8.设,若,则=()A. B. C. D.9.的展开式中只有第5项二项式系数最大,则展开式中含项的系数是()A. B. C. D.10.等差数列{an}的前n项和Sn,且4≤S2≤6,15≤S4≤21,则a2的取值范围为()A. B. C. D.11.设,则z的共轭复数为A. B. C. D.12.已知双曲线的左、右焦点分别为、,过作垂直于实轴的弦,若,则的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在直角坐标系中,若直线(为参数)过椭圆(为参数)的左顶点,则__________.14.吃零食是中学生中普遍存在的现象.长期吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表给出性别与吃零食的列联表男女总计喜欢吃零食51217不喜欢吃零食402868合计454085根据下面的计算结果,试回答,有_____的把握认为“吃零食与性别有关”.参考数据与参考公式:0.0500.0100.0013.8416.63510.82815.一空间几何体的三视图如图所示,则该几何体的体积为_________.16.关于的方程的两个根,若,则实数__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知平面内点到点的距离和到直线的距离之比为,若动点P的轨迹为曲线C.(I)求曲线C的方程;(II)过F的直线与C交于A,B两点,点M的坐标为设O为坐标原点.证明:.18.(12分)已知圆C的圆心在x轴上,且经过两点,.(1)求圆C的方程;(2)若点P在圆C上,求点P到直线的距离的最小值.19.(12分)已知函数.(1)讨论的单调性;(2)是否存在,使得在区间的最小值为且最大值为1?若存在,求出的所有值;若不存在,说明理由.20.(12分)已知函数().(Ⅰ)若曲线在点处的切线平行于轴,求实数的值;(Ⅱ)当时,证明:.21.(12分)已知.(1)求的解集;(2)设,求证:.22.(10分)已知函数.求不等式的解集;若,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
当指数函数与对数函数只有一个公共点时,则在该点的公切线的斜率相等,列出关于的方程.【详解】设切点为,则,解得:故选B.本题考查导数的运算及导数的几何意义,考查数形结合思想的应用,要注意根据指数函数与对数函数图象的凹凸性,得到在其公共点处公切线的斜率相等.2、D【解析】
根据组合数的性质,将化简为,再展开即可得出结果.【详解】,所以除以9的余数为1.选D.本题考查组合数的性质,考查二项式定理的应用,属于基础题.3、B【解析】
先把圆的极坐标方程化为直角坐标方程,确定其圆心的直角坐标再化成极坐标即可.【详解】圆化为,,配方为,因此圆心直角坐标为,可得圆心的极坐标为故选B本题考查极坐标方程与直角坐标方程的转化,点的直角坐标与极坐标的转化,比较基础.4、C【解析】
先求出集合M,由此能求出M∩N.【详解】则故选:C本题考查交集的求法,考查交集定义、函数性质等基础知识,考查运算求解能力,是基础题.5、A【解析】分析:利用余弦定理即可。详解:由余弦定理可知,所以。点睛:已知三边关系求角度,用余弦定理。6、A【解析】分析:根据x>0时f(x)解析式即可知f(x)在(0,+∞)上单调递增,由f(x)为奇函数即可得出,然后比较的大小关系,根据f(x)在(0,+∞)上单调递增即可比较出a,b,c的大小关系.详解:x>0时,f(x)=lnx;∴f(x)在(0,+∞)上单调递增;∵f(x)是定义在R上的奇函数;=;,;∴;∴;∴a<b<c;即c>b>a.故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.7、A【解析】设公比为q,则,选A.8、C【解析】
先计算,带入,求出即可。【详解】对求导得将带入有。本题考查函数求导,属于简单题。9、C【解析】
根据只有第5项系数最大计算出,再计算展开式中含项的系数【详解】只有第5项系数最大,展开式中含项的系数,系数为故答案选C本题考查了二项式定理,意在考查学生的计算能力.10、B【解析】
首先设公差为,由题中的条件可得和,利用待定系数法可得,结合所求的范围及不等式的性质可得.【详解】设公差为,由,得,即;同理由可得.故可设,所以有,所以有,解得,即,因为,.所以,即.故选:B.本题主要考查不等式的性质及等差数列的运算,利用不等式求解范围时注意放缩的尺度,运算次数越少,范围越准确.11、D【解析】试题分析:的共轭复数为,故选D.考点:1.复数的四则运算;2.共轭复数的概念.12、C【解析】
由题意得到关于a,c的齐次式,然后求解双曲线的离心率即可.【详解】由双曲线的通径公式可得,由结合双曲线的对称性可知是等腰直角三角形,由直角三角形的性质有:,即:,据此有:,,解得:,双曲线中,故的离心率为.本题选择C选项.双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:直接化参数方程为普通方程,得到直线和椭圆的普通方程,求出椭圆的左顶点,代入直线的方程,即可求得的值.详解:由已知可得圆(为参数)化为普通方程,可得,故左顶点为,直线(为参数)化为普通方程,可得,又点在直线上,故,解得,故答案是.点睛:该题考查的是有关直线的参数方程与椭圆的参数方程的问题,在解题的过程中,需要将参数方程化为普通方程,所以就需要掌握参数方程向普通方程的转化-----消参,之后要明确椭圆的左顶点的坐标,以及点在直线上的条件,从而求得参数的值.14、95%.【解析】
根据题意得出观测值的大小,对照临界值得出结论.【详解】根据题意知K2≈4.722>3.841,所以有95%的把握认为“吃零食与性别有关”.故答案为95%.本题考查了列联表与独立性检验的应用问题,是基础题.15、.【解析】此几何体是一个组合体,由三视图可知上面正四棱柱的高为,其体积为.16、【解析】分析:根据所给的方程,当判别式不小于0时和小于0时,用求根公式表示出两个根的差,根据差的绝对值的值做出字母p的值.详解:当,即或,由求根公式得,得当,即,由求根公式得|得综上所述,或.
故答案为.点睛:本题考查一元二次方程根与系数的关系,本题解题的关键是对于判别式与0的关系的讨论,方程有实根和没有实根时,两个根的表示形式不同,本题是一个易错题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)(II)见解析【解析】
(I)根据题目点到点的距离和到直线的距离之比为,列出相应的等式方程,化简可得轨迹C的方程;(II)对直线分轴、l与x轴重合以及l存在斜率且斜率不为零三种情况进行分析,当l存在斜率且斜率不为零时,利用点斜式设直线方程,与曲线C的方程进行联立,结合韦达定理,可推得,从而推出.【详解】解:(I)∵到点的距离和到直线的距离之比为.∴,.化简得:.故所求曲线C的方程为:.(II)分三种情况讨论:1、当轴时,由椭圆对称性易知:.2、当l与x轴重合时,由直线与椭圆位置关系知:3、设l为:,,且,,由化简得:,∴,设MA,MB,所在直线斜率分别为:,,则此时,.综上所述:.本题主要考查了利用定义法求轨迹方程以及直线与圆锥曲线的综合问题.解决直线与圆锥曲线位置关系中常用的数学方法思想有方程思想,数形结合思想以及设而不求的整体代入的技巧与方法.18、(1)(2)【解析】
(1)设圆心在轴上的方程是,代入两点求圆的方程;(2)利用数形结合可得最短距离是圆心到直线的距离-半径.【详解】解:(1)由于圆C的圆心在x轴上,故可设圆心为,半径为,又过点,,故解得故圆C的方程.(2)由于圆C的圆心为,半径为,圆心到直线的距离为,又点P在圆C上,故点P到直线的距离的最小值为.本题考查了圆的方程以及圆有关的最值问题,属于简单题型,当直线和圆相离时,圆上的点到直线的最短距离是圆心到直线的距离-半径,最长的距离是圆心到直线的距离+半径.19、(1)见详解;(2)或.【解析】
(1)先求的导数,再根据的范围分情况讨论函数单调性;(2)根据的各种范围,利用函数单调性进行最大值和最小值的判断,最终得出,的值.【详解】(1)对求导得.所以有当时,区间上单调递增,区间上单调递减,区间上单调递增;当时,区间上单调递增;当时,区间上单调递增,区间上单调递减,区间上单调递增.(2)若在区间有最大值1和最小值-1,所以若,区间上单调递增,区间上单调递减,区间上单调递增;此时在区间上单调递增,所以,代入解得,,与矛盾,所以不成立.若,区间上单调递增;在区间.所以,代入解得.若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.即相减得,即,又因为,所以无解.若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.即相减得,解得,又因为,所以无解.若,区间上单调递增,区间上单调递减,区间上单调递增.所以有区间上单调递减,所以区间上最大值为,最小值为即解得.综上得或.这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.20、(Ⅰ);(Ⅱ)见解析【解析】
(Ⅰ)由曲线在点处的切线平行于轴,可得,从而得到答案;(Ⅱ)令函数,要证,即证,利用导数求出的最小值即可。【详解】(Ⅰ)由题可得;,由于曲线在点处的切线平行于轴,得,即,解得:;(Ⅱ)当时,,要证明,即证:;令,求得;令,解得:,令,解得:,令,解得:,所以在上单调递减,在上单调递增,则,即,从而。本题考查导数的几何意义,以及导数在研究函数中的应用,本题解题的关键是构造函数,利用导数求出函数的最小值,属于中档题。21、(1);(2)证明见解析.【解析】
(1)利用零点分段法,写出的分段函数形式,分类讨论求解即可(2)根据,,利用作差法即可求证【详解】(1)当时,由,得,解得,所以;当时,,成立;当时,由,得,解得,所以.综上,的解集.(2)证明:因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论